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Abstract

The classical method to determine the cut off value between normal and disease
group is to calculate two standard deviations of the difference between mean values
of two groups under the independence assumption. However, this independence
assumption does not hold in general, and in our study in particular, when two
biomarker proteins of breast cancer are measured several times for a few years. In
this paper we propose a method to determine the cut off value for this case by
implementing the inherent nature of the study using linear mixed effect model.
We use a linear mixed effect model to take it into consideration that the subject
is of a random effect. Furthermore, we can also estimate the growth curve of the
biomarker values as time elapses. For a fixed type I error rate we calculate the
conditional probability that the test is positive given that the subject does have
the disease and then compare the sensitivity of our method with that of classical
method using a leave-one-out cross validation. We observe that our method is more
efficient than the classical method.

Key Words and Phrases: Biomarker, Cross validation, Cut off value, ELISA, Linear mixed

effect model.

1. Introduction

Biomarkers have been searched for in various cancers although quite a few of them
have been known. In our study we find two biomarker proteins, say Protein 1 and Protein
2, from breast tissues which can be detected using Enzyme-Linked Immunosorbent Assay
(ELISA) in the blood of the subject (Rha et al., 2000). It is also important to determine
the cut off value between the disease and the normal groups once the biomarker proteins
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Figure 1: The chart of examinations to a monochrome type. The flow chart of subject
starts at Status A or C. Whenever diagnosis indicates “no cancer” or “no treament re-
sponse” at a certain Status, the flow chart of subject will stop at that Status. Otherwise,
it will proceed along the chart.

have been developed. The classical method to determine the cut off value is to calculate
two standard deviations from the difference between mean values of two groups under
the independence assumption (Rha et al, 2000). However, this method is not appropriate
when the assumption is violated. In our study Protein 1 and Protein 2 of each subject
are measured several times for a few years by following a flow chart of the examination
which is shown in Figure 1. Thus, observations of each subject are not independent.

The purpose of this paper is to propose a statistical method of determining a cut
off value between normal and disease groups when observations are not independent.
We develop the method to determine the cut off value using a linear mixed effect model
which allows us to model that the subject is of a random effect. The computational
methods are described in Pinheiro and Bates (2000) and we follow the general framework
of Lindstrom and Bates (1988). The model formulation is described in Laird and Ware
(1982). We calculate the false positive probability after we fixed the probability of type I
error at a low level. We compare the false positive probability of our method with that of
the classical method using leave-one-out cross validation. Furthermore, we estimate the
growth curve of the biomarker values as time elapses as we proceed along the flow chart
of examination of Figure 1. We also determine what factors affect the biomarker values
such as sex, age, treatment and surgery of which the problem the classical method can
not formulate. Hence, our method utilizes more information of data and furthermore,
it does not require the independence assumption.
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2. Materials and methods

We collected 54 female patients who had breast cancers, 40 female subjects and
13 male subjects from normal group in Cancer Metastasis Research Center (CMRC),
College of Medicine, Yonsei University, Korea. An ELISA was used to measure two
biomarkers from blood of subjects. For each subject we obtain measurments of two
proteins by following the flow chart of the examinations in Figure 1. The subject starts
at stages A or C in the flow chart. Whenever the subject is diagnosed having no cancer
at a certain stage, the flow chart of the subject will stop at that stage. Otherwise, it
will proceed along the flow chart. Fourteen out of 54 patients are measured once; some
patients took a surgery at the first examination and then were diagnosed having no
cancer. For each of these patients we have only one measurment on the biomarker. Other
patients were diagnosed as “no need of treatment” at the first examination becasue their
cancer stages were beyond the treatment. These patients also had one measurment on
the biomarker. In general the number of measurments depend on the Status of disease
and situation of each patient. We also have age information on each subject. The
histograms of two biomarkers between the normal and the disease groups are given in
Figure 2.

3. Statistical Methods

The biomarker values of some subjets are measured several times. We use a linear
mixed effect model (LME) considering the subject as a random effect. We include
following variables in the model; age, the length of time in terms of the month between
the first examination and current examination, disease Status, whether the surgery is
performed, and whether treatment is made. Finally, we fitted the following linear mixed
effect model of equation (1) to describe the biomarker value yijklmn measured on the
n month interval between the first and the current examinations at the mth surgery
indicator of the lth treatment indicator at the age when the kth measurement was made
for the jth subject in the ith group:

yijklmn = β0 + β1Groupi + Subjj + β2Agek + β3Trtl + β4Surm + β5Monthn

+ β6(Sur ∗Month)mn + εijklmn, (1)

where Subjj ∼ N(0, σ2
1), εijklmn ∼ N(0, σ2

i ), i =1 (normal group), 2 (disease group),
j = 1, 2, ..., Ni, k = 1, 2, ..., Lij , l =1 (no treatment), 2 (treatment), m =1 (before
surgery), 2 (after surgery), n = 1, ..., Lij .

The fixed effects are group, age, surgery, treatment, time (in terms of month)
interval and interaction between the surgery and the time interval. The Subjj denotes
the subject random effect, assumed to be independent for different subject, and the
within group errors εijklmn are independent and identically distributed, assumed to be
independent of the random effect.

We checked graphically on assumptions of the linear mixed effects model (plots not
shown). First, a plot of the standardized residual versus the fitted values showed that the
residuals were distributed symmetrically around zero with an approximately constant
variance. It did not indicate the violation of the constant variance assumption of the
within-group error. Second, the normal probability plot of the standardized residual
indicated a little violation of the normality assumption for the within-group errors. The
assumption that the subject followed a normal distribution with a constant variance did
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Figure 2: Histograms of Protein 1 (a) and Protein 2 (b) between the normal (left) and
the disease (right) groups.
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not look violated much. Finally, the adequacy of the fitted model was better visualized
by fitted curves on real data which was shown in Figure 3. These plots showed that
the linear mixed effect model of equation (1) fitted the data quite well. The data were
spreaded around fitted curve due to the variance of observations on each person. The
fitted curve represents the mean of observation of each person.

Furthermore, we subgrouped the disease group by following the flow chart of Figure
1. Stages of patients were divided into five stages, i.e., I, II, IIIa, IIIb and IV when a
patient enrolled. we considered whether the stage of a patient was more serious than
stage IIIa. In Figure 1, the flow chart starts at Status A or C. Status A stands for the
indication of a cancer with stage less serious than IIIb which we denote using a symbol
”Stage < IIIb”. Status B is the notation for the case when a patient has a surgery. Status
C means that a patient has cancer with stage IIIb or IV. Status D denotes the case when
a patient receives treatment A after Status C. Status E represents the indication of no
cancer after surgery. Status F stands for the indication of cancer after surgery. Status
G implies that a patient receives treatment T after Status F. Status H means the case
when a patient has treatment G. Status I denotes the indication of no cancer after Status
G. Status J represents the case when a patient takes treatment I after Status H. Status
K indicates no treatment response after Status H. Status L represents the case when a
patient takes the treatment X after Status J. Status M denotes no treatment response
after Status J. Status N stands for no treatment response after Status L. Therefore, the
flow chart of subject will stop at certain Status whenever diagnosis indicates “no cancer”
or “no treatment response”. Otherwise, it will proceed along the chart.

First, we consider two subgroups; one consists of the Status{B,E,I} corresponding
to diagnosis of having no cancer and the other group, Ω−{B,E,I}, where Ω denotes
all the Status in Figure 1. Second, we also consider three subgroups; the first one is
composed of Status {A,C,D} in disease group, the second one is {B,E,I}, and the third
one consists of Ω−{A,B,C,D,E,I}. We replace the group indicator with the subgroup
indicator in the model (1) and then fit the model to compare each of these subgroups
with the normal group.

4. Results

4.1. Comparison of biomarker values between male and female in the nor-
mal group

We first test whether the biomarker values between female and male are different
using t-test and Wilcoxon rank sum test. We found that there was a significant differ-
ence between male and female in both tests whose results were given in Table 1. This
result imlpies that the cut off values between males and females should be seperately
determined.

4.2. Age effect

We also investigate whether the age affects the biomarker values between the disease
group and the normal group. Since the patient group consists of all female, we only
consider female subjects. There is no evidence that age affects the biomarker values
between two groups, of which detailed results are presented in Table 2.
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Table 1: Test result whether the biomarker value between female and male is different using

t-test and Wilcoxon rank sum test.

Biomarker Protein 1 Protein 2
Test t Wilcoxon rank sum t Wilcoxon rank sum
t stat 6.367 5.470 -5.917 -4.979

p-value 0 0 0 0

Table 2: Test results whether age affects the biomarker values between the disease and the

normal groups.

Biomarker Mean S.E t-value p-value
Protein 1 -0.266 0.243 -1.091 0.276
Protein 2 0.003 0.002 1.282 0.201

4.3. Linear Mixed Effect Model Fit

After we fit the linear mixed effect model including the group indicator(the disease
and the normal groups), the time (in terms of month) interval, the surgery indicator,
the treatment indicator, and the interaction between the time interval and the surgery
and considering subjects as a random effect, we found the evidence of the difference of
Protein 1 between the disease and the normal groups. We also detect the difference
of Protein 1 between without treatment and with treatment groups. Furthermore, we
observe that the growth curve of Protein 1 between before surgery and after surgery has
changed as time elapses( Figure 1). We also note the difference of Protein 1 between
before surgery and after surgery. On the other hand, there is no evidence of the difference
in Protein 2 between the disease and the normal groups. We also detect no difference
in Protein 2 between without treatment and with treatment groups. However, there
is an evidence of the difference of Protein 2 between before surgery and after surgery
groups. The growth curve of Protein 2 between before surgery and after surgery groups
has changed as time elapses, as is indicated in Figure 3.

The test results are given in Table 3. These results imply that Protein 1 is more
sensitive to the development of disease than Protien 2.

4.4. Comparisons of each of subgroups with normal group

First, we fit the model to compare the normal group(N) with two subgroups which
are defined in the previous section. As a result of fit, there is no evidence of the difference
of Protein 1 between two subgroups. We did not find the difference of Protein 1 between
the normal group and the subgroup 1, {B, E, I}. However, there is an evidence of the
difference of Protein 1 between the normal group and the subgroup 2, Ω−{B, E, I}. As
we expect from the result of previous section, there is an evidence of the surgery effect
and the treatment effect. We also notice that the growth curve of protein 1 between
before surgery and after surgery groups has changed as time elapses. We did not find no
difference of each protein between two subgroups and no difference between the normal
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Figure 3: A linear mixed effect model fits of Protein 1 (a) and Protein 2 (b) between
before surgery (left) and after surgery (right). These plots show that the linear mixed
effect model fits quite well our data which are spreaded around the fitted curve due to
the variance of observations of each person. The fitted curve represents the mean of
observations of each person.
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Table 3: Significance test results by fitting a linear mixed effect model which included for

covariates the group indicator(disease vs normal groups), the time (in terms of month) interval,

the surgery indicator, the treatment indicator and the interaction between the surgery and the

time interval.

Covariate Protein 1 Protein 2
Mean S.E. t stat p-value Mean S.E. t stat p-value

Group 7.125 2.533 2.812 0.0060 -0.026 0.041 -0.640 0.524
Month -0.801 0.106 -7.500 0.0001 0.009 0.003 2.527 0.012
Treat -5.661 1.158 -4.885 0.0001 -0.011 0.010 -1.094 0.275

Surgery 13.679 4.088 3.345 0.0010 0.082 0.037 2.224 0.027
Surgery -0.977 7.432 -2.262 0.0249 -0.009 0.003 -2.318 0.022
*Month

group and the subgroup 2, Ω−{B, E, I}. We also note that no difference between normal
group and the subgroup 1, {B, E, I}. In addition, we find no significant difference
between without treatment and with treatment groups. However, we see a significant
difference between before surgery and after surgery groups. The growth curve of Protein
2 between before surgery and after surgery groups has changed as time elapses. These
test results are given in Table 4.

Furthermore, we also fit the LME to compare each of three subgroups with the
normal group. However, there is no evidence of the difference between the normal and
each of these subgroups due to small amount of data for each subgroup (results not
shown).

Table 4: Test results fitting a linear mixed effect model which included for covariates the

subgroup indicator, the time ( in terms of month) interval, the surgery indicator, the treatment

indicator, and the interaction between the time interval and the surgery effect. SGi is a notation

for subgroup i, i=1,2 and N stands for the normal group.

Covariate Protein 1 Protein 2
Mean S.E t stat p-value Mean S.E t stat p-value

SG1 5.823 3.032 1.920 0.056 -0.011 0.044 -0.261 0.794
vs SG2

SG1 vs N -1.161 1.514 -0.766 0.444 0.012 0.013 0.894 0.372
SG2 vs N -6.985 2.529 -2.761 0.0064 0.023 0.041 0.580 0.562
Month -0.825 0.111 -7.385 0.0001 0.009 0.004 2.567 0.011
Treat -5.600 1.172 -4.777 0.0001 -0.011 0.010 -1.115 0.266

Surgery 5.941 1.890 3.142 0.0020 0.072 0.038 1.862 0.047
Surgery -0.977 0.432 -2.262 0.0251 -0.009 0.003 -2.290 0.023
*month
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4.5. Cutoff value between normal and disease groups.

For a fixed type I error rate we calculate the cut off value using the linear mixed
effect model. We compare our method with the classical method using the leave-one-out
cross valdiation. For each step in the leave-one-out cross validation we omit one patient
and calculate the cut off value with remaining patients. We then calculate the sensitivity.
We performed this procedure for each patient. The means of cut off values of the cross
validation on the each method for three levels of type I error and theirs correspoding
sensitivities are given in Tables 5 and 6, respectively Protein 1 and Proten 2. We recall
that the growth curve of before surgery group is significantly different from that of after
surgery group. In addition we note that the evidence of Status {B, E, I} in disease
group is not different from normal group. Therefore, the false positive probability which
is conditional probability that the test is positive given that the subject does have the
disease, were affected by these effects.

Table 5: Means of cut off values for three confidence levels and their corresponding sensitivities

of Protein 1 based on a leave-one out cross validation on the classical method and the linear

mixed effect model (LME). We used the same type I error rate (α) for each of two methods.

Confidence level(%) Classical method LME
100*(1-α) Cut off value Sensitivity Cut off value Sensitivity

95 51.35 0.625 53.84 0.650
99 53.40 0.613 55.36 0.650

99.9 54.87 0.608 57.18 0.625

Table 6: Means of cut off values for three confidence levels and their corresponding sensitivities

of Protein 2 based on a leave-one out cross validation on the classical method and the linear

mixed effect model (LME). We used the same type I error rate (α) for each of two methods.

Confidence level(%) Classical method LME
100*(1-α) Cut off value Sensitivity Cut off value Sensitivity

95 0.657 0.700 0.710 0.758
99 0.671 0.663 0.724 0.750

99.9 0.688 0.650 0.740 0.725

5. Discussion

We has proposed a statistical method of determining a cut off value between normal
and disease groups when observations are not independent using linear mixed effect
model. This method can be applied to longditudinal data or time course experiemt
where the independent assumption of observation does not hold.
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We restrict ourselves study on the linear model which might not detect nonlinear
effect. It would be more interest if we could model to catch both linear and nonlinear
effects by adding nonlinear term in the model (1). It will be more useful to fit this model
without the normality assumption. These aspects of the study are left for the further
research.

Figure 3 indicates that there may be two cluster data points of Protien 2. However,
we did not particularly attempt to model these two cluster data points, since there was
no clinical justfication of observing two clusters of Protein 2 values.

Acknowledgement
Byung Soo Kim’s research was supported by a grant of the Korea Health 21 R&D

Project, Ministry of Health & Welfare, Republic of Korea (02-PJ1-PG3-10411-00-03).
Hyun Cheol Chung’s research was supported by the Korea Science and Engineering Fund
through the Cancer Metastasis Research Center at Yonsei University.

References

Laird, N.M. and Ware, J.H. (1982). Random-Effects Models for Longitudinal Data,
Biometrics, 38, 963-974.

Lindstrom, M.J. and Bates, D.M. (1988). Newton-Raphson and EM Algorithms for
Linear Mixed-Effects Models for Repeated-Measures Data, Journal of the Ameri-
can Statistical Association, 83, 1014-1022.

Pinheiro, J. C. and Bates, D. M. (2000). Mixed-Effect Models in S and S-PLUS,
Springer-Verlag, New York.

Rha, S. Y., Yang, W. I., Gong, S. J., Kim, J. J., Kim B. S. and Chung, H. C. (2000).
Correlation of Tissue and Blood Plasminogen Activation System in Breast Cancer,
Cancer Letters, 150, 137-145.

Received October 18, 2003
Revised April 20, 2004


