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Abstract

The parametric estimation of both drift and diffusion coefficient parameters for
d-dimensional diffusion processes with small dispersion parameter ε is stated when
the data are discretely observed at equidistant time points k/n, k = 0, 1, · · · , n.
Using the contrast function based on a Gaussian approximation to the transition
density, we present asymptotic properties for the minimum contrast estimator as
ε tends to 0 and n tends to ∞ simultaneously.

Key Words and Phrases: Discrete time sampling, parametric inference, stochastic differential

equation.

1. Introduction

In this paper, we consider a family of d-dimensional diffusion processes with small
dispersion parameter defined by the stochastic differential equations

dXt = b(Xt, θ)dt + εσ(Xt, θ)dwt, t ∈ [0, 1], ε ∈ (0, 1], X0 = x0, (1)

where θ ∈ Θ̄, Θ is an open bounded convex subset of Rp, x0 and ε are known constants,
b is an Rd-valued function defined on Rd × Θ̄, σ is an Rd ⊗Rr-valued function defined
on Rd × Θ̄ and w is an r-dimensional standard Wiener process. We assume that the
drift b and the diffusion coefficient σ are known apart from the parameter θ. The data
are discretely observed at the points of time tk = k/n, k = 0, 1, · · · , n, on the interval
[0, 1], that is, (Xtk

)0≤k≤n. The asymptotics considered is when ε tends to 0 and n tends
to ∞ simultaneously.

Small dispersion asymptotics for diffusion processes and their applications are well-
developed. Most of the researches were focused on the case when the whole path is
completely observed. For details, see Kutoyants (1984, 1994), Yoshida (1992a, 1993,
1996, 2001), Dermoune and Kutoyants (1995), Sakamoto and Yoshida (1996), Uchida
and Yoshida (2004). For applications to mathematical finance, see Yoshida (1992b),
Kim and Kunitomo (1999), Takahashi (1999), Kunitomo and Takahashi (2001), Taka-
hashi and Yoshida (2004), Uchida and Yoshida (2004).
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On the other hand, there are not so many studies on parametric estimation for
diffusion processes with small dispersion parameter from discrete observations. Genon-
Catalot (1990) and Laredo (1990) obtained asymptotically efficient estimators of drift
parameters for discretely observed diffusion processes with small dispersion parameter
under the assumption that the diffusion coefficient function is known. Uchida (2004)
studied the efficient estimation under a general assumption on ε and n when the dif-
fusion coefficient function is known. Sørensen (2000) considered martingale estimating
functions for diffusion processes with small dispersion parameter. He also showed the
consistency and asymptotic normality of estimators of drift and diffusion coefficient
parameters under the condition that the sample size of discrete observations is fixed.
Recently, Sørensen and Uchida (2003) studied consistent, asymptotically normal and
asymptotically efficient estimators of parameters which appear in the drift and the dif-
fusion coefficient separately. Their diffusion model is somewhat special and is defined
by

dXt = b(Xt, α)dt + εσ(Xt, β)dwt, t ∈ [0, 1], ε ∈ (0, 1], X0 = x0. (2)

They pointed out that when (ε
√

n)−1 → 0, the rate of convergence for the estimator
of the drift parameter α is different from that of diffusion coefficient parameter β. For
more details of the results for the model (2), see Sørensen and Uchida (2003).

Although two models (1) and (2) look quite similar, there is an obvious difference in
their parameterization. Note that the model (1) includes the model (2) but its inversion
does not generally hold true. In order to obtain asymptotic properties of an estimator
for the model (1), we cannot use the results in Sørensen and Uchida (2003). Thus, we
discuss the estimation for the diffusion model (1) whose drift and diffusion coefficient
may have the same parameter. The purpose of this paper is to show that a minimum
contrast estimator obtained from a contrast function based on a Gaussian approximation
to the transition density is consistent and asymptotically normal.

This paper is organized as follows: In Section 2, several notations and assumptions
are introduced. Section 3 presents our main result. The consistency and asymptotic
normality of the minimum contrast estimator are stated. Section 4 gives two examples
and the asymptotic behaviour of our estimators through simulations. Section 5 is devoted
to prove the asymptotic results in Section 3.

2. Notations and assumptions

Let θ0 denote the true value of θ. Let X0
t be the solution of the ordinary dif-

ferential equation: dX0
t = b(X0

t , θ0)dt, X0
0 = x0. We denote by C a generic positive

constant independent of n and other variables in some cases (see Yoshida (1992c) and
Kessler (1997)). Moreover we may write Cm if it depends on an integer m. A∗ denotes
the transpose of the matrix A and |A|2 = tr(AA∗). Let C̄∞↑ (Rd ×Θ;Rm) be the space
of all functions f satisfying the following two conditions: (i) f(x, θ) is an Rm-valued
function on Rd×Θ and smooth in (x, θ), (ii) for |n| ≥ 0, |ν| ≥ 0 there exists C > 0 such
that supθ∈Θ |δν∂nf | ≤ C(1+ |x|)C for all x, where n = (n1, · · · , nd) and ν = (ν1, · · · , νp)
are multi-indices, |n| = n1 + · · ·+ nd, |ν| = ν1 + · · ·+ νp, ∂n = ∂n1

1 · · · ∂nd

d , ∂i = ∂/∂xi,
i = 1, · · · , d, δν = δν1

1 · · · δνp
p , δj = ∂/∂θj , j = 1, · · · , p.

We make the following assumption on the model (1).
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Assumption 2.1. (i) Equation (1) has a unique strong solution on [0, 1]. (ii) For
all m > 0, supt E[|Xt|m] < ∞. (iii) b(x, θ) ∈ C̄∞↑ (Rd × Θ̄;Rd), σ(x, θ) ∈ C̄∞↑ (Rd ×
Θ̄;Rd ⊗Rr). (iv) infx,θ det[σσ∗](x, θ) > 0, [σσ∗]−1(x, θ) ∈ C̄∞↑ (Rd × Θ̄;Rd ⊗Rd).

Moreover, we consider the following assumption for ε and n.

Assumption 2.2. limε→0,n→∞(ε
√

n)−1 = M , where M < ∞.

Assumptions 2.1 and 2.2 will be made throughout this paper, while the following
Assumption 2.3 will be needed as an identifiability assumption in order to obtain our
main theorem in Section 3. (at least consistent estimators).

Assumption 2.3. b(X0
t , θ) = b(X0

t , θ0), σσ∗(X0
t , θ) = σσ∗(X0

t , θ0) ⇒ θ = θ0.

Let Pθ be the law of the solution of (1). Set Ξk(θ) = [σσ∗](Xtk
, θ) and B(x, θ0, θ) =

b(x, θ0)− b(x, θ). We define I(θ0) =
(
Ii,j

b (θ0) + Ii,j
σ (θ0)

)
1≤i,j≤p

, where

Ii,j
b (θ0) = M2

∫ 1

0

(
∂

∂θi
b(X0

s , θ0)
)∗

[σσ∗]−1(X0
s , θ0)

(
∂

∂θj
b(X0

s , θ0)
)

ds,

Ii,j
σ (θ0) =

1
2

∫ 1

0

tr
[(

∂

∂θi
[σσ∗]

)
[σσ∗]−1

(
∂

∂θj
[σσ∗]

)
[σσ∗]−1(X0

s , θ0)
]

ds.

Set

U(θ, θ0) =
∫ 1

0

log det[σσ∗](X0
s , θ)ds +

∫ 1

0

tr
[
[σσ∗](X0

s , θ0)[σσ∗]−1(X0
s , θ)

]
ds

+M2

∫ 1

0

B∗(X0
s , θ0, θ)[σσ∗]−1(X0

s , θ)B(X0
s , θ0, θ)ds.

3. The minimum contrast estimator

In order to obtain the minimum contrast estimator, we construct the contrast
function based on a Gaussian approximation to the transition density in the same way
as in Kessler (1997). From Lemma 1 in Florens-Zmirou (1989), we have the following
contrast function.

Uε,n(θ) =
n∑

k=1

{log det Ξk−1(θ) + ε−2nP ∗k (θ)Ξk−1(θ)−1Pk(θ)},

where Pk(θ) = Xtk
−Xtk−1 − b(Xtk−1 , θ)/n.

Proposition 3.1. Suppose that Assumptions 2.1 and 2.2 hold true. Then, in Pθ0-
probability, as ε → 0 and n →∞,

sup
θ∈Θ̄

∣∣∣∣
1
n

Uε,n(θ)− U(θ, θ0)
∣∣∣∣ → 0.
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Proposition 3.2. Suppose that Assumptions 2.1 and 2.2 hold true. Then, in Pθ0-
probability, as ε → 0 and n →∞,
(i)

Cε,n(θ0) :=

(
1
n

(
∂2

∂θi∂θj
Uε,n(θ0)

)

1≤i,j≤p

)
→ 2I(θ0),

(ii)
sup

|θ|≤ηε,n

|Cε,n(θ0 + θ)− Cε,n(θ0)| → 0,

where ηε,n → 0.

Proposition 3.3. Suppose that Assumptions 2.1 and 2.2 hold true. Then

Λε,n :=

(
− 1√

n

(
∂

∂θi
Uε,n(θ0)

)

1≤j≤p

)
→ N (0, 4I(θ0))

in distribution, under Pθ0 , as ε → 0 and n →∞.

Let θ̂ε,n be a minimum contrast estimator defined by

Uε,n(θ̂ε,n) = inf
θ∈Θ̄

Uε,n(θ). (3)

Our main theorem is as follows.

Theorem 3.4. Suppose that Assumptions 2.1, 2.2 and 2.3 hold true. Then,

θ̂ε,n → θ0

in Pθ0-probability as ε → 0 and n →∞. Moreover, if I(θ0) is non-singular, then
√

n(θ̂ε,n − θ0) → N
(
0, I(θ0)−1

)

in distribution, under Pθ0 , as ε → 0 and n →∞.

Remark. (i) From the proof of the consistency in Theorem 3.4, it can be immedi-
ately shown that the consistency of θ̂ε,n holds true under θ0 ∈ Θ̄ instead of θ0 ∈ Θ. (ii)
To obtain Theorem 3.4, we can relax (iii)-(iv) in Assumption 2.1. Using a “classical”
localization argument, we can replace them by mild regularity conditions about b and σ
near the neighborhood of the path of X0

t . (iii) Using approximate martingale estimat-
ing functions, we can derive estimators with the same properties as Theorem 3.4. For
details, see Uchida (2003).

4. Examples

In this section, we study the behavior of our estimators in two examples through
simulations. In both examples, for each ε = 0.1, 0.05, 0.01, 0.005 and n = 50, 100, 500, 1000,
we simulated 1000 independent sample paths with θ = θ0 (true parameter value) and
the initial value x0. The simulations were done with the Euler-Maruyama scheme, see
Kloeden and Platen (1992), Deelstra and Delbaen (1999) and Kanagawa and Ogawa (2001).
For each sample path, the minimum contrast estimators θ̂ε,n were calculated. For the
resulting 1000 values of estimators, the mean and the standard deviation of the estima-
tors were computed. The means should be compared to the true parameter values, while
the standard deviations can be compared to the theoretical values given by Theorem
3.4.
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4.1. The Pedersen-Bibby-Sørensen-Kessler model

We first consider the diffusion model with small dispersion parameter given by the
one dimensional stochastic differential equation

dXt = −θXtdt + ε
√

θ + X2
t dwt, t ∈ [0, 1], ε ∈ (0, 1], X0 = x0, (4)

where θ > 0, x0 and ε are known constants. This model for ε = 1 was originally
proposed by A. R. Pedersen and was studied further by Bibby and Sørensen (1995) and
by Kessler (2000).

The contrast function that yields an estimator for θ is

Uε,n(θ) =
n∑

k=1

{
log(θ + X2

tk−1
) + ε−2n

(Xtk
−Xtk−1 + 1

nθXtk−1)
2

(θ + X2
tk−1

)

}
.

In Table 1 below, we set the parameter value θ = 1 and the initial value x0 = 0.5.
The small dispersion asymptotics with decreasing step size gives a very good approxi-
mation to the standard deviation of θ̂ε,n and small bias of θ̂ε,n in all cases. Therefore,
we conclude that our estimator has a good approximation to the true parameter in this
example.

Table 1: (PBSK model) The mean and standard deviation of the estimator θ̂ε,n deter-
mined from 1000 independent simulated sample paths for θ = 1, x0 = 0.5.

n ε sim. mean sim. s.d. theor. s.d.
50 0.1 0.982204 0.165193 0.182485

0.05 0.988577 0.117725 0.130733
0.01 0.990805 0.031522 0.032110
0.005 0.990693 0.016179 0.016184

100 0.1 0.988577 0.135620 0.140629
0.05 0.993116 0.106856 0.112477
0.01 0.995769 0.031742 0.031775
0.005 0.995655 0.016359 0.016141

500 0.1 0.998824 0.068914 0.068223
0.05 0.999258 0.065236 0.064106
0.01 0.999873 0.030709 0.029428
0.005 0.999691 0.016483 0.015806

1000 0.1 1.000425 0.049423 0.048783
0.05 1.000531 0.047909 0.047209
0.01 1.000527 0.028125 0.027116
0.005 1.000257 0.016043 0.015416
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4.2. The generalized Cox-Ingersoll-Ross model

The second example is the following diffusion model with small dispersion param-
eter defined by the one dimensional stochastic differential equation

dXt = (αX2γ−1
t + βXt)dt + εXγ

t dwt, t ∈ [0, 1], ε ∈ (0, 1], X0 = x0, (5)

where α, β ∈ R, γ 6= 1, x0 and ε are known constants. This is a version of the general-
ized Cox-Ingersoll-Ross model introduced by Jacobsen (2001). For more details of the
generalized Cox-Ingersoll-Ross model, see Jacobsen (2001, 2002).

The contrast function that yields estimators for α, β and γ is

Uε,n(α, β, γ) =
n∑

k=1





log X2γ
tk−1

+ ε−2n

[
Xtk

−Xtk−1 − 1
n (αX2γ−1

tk−1
+ βXtk−1)

]2

X2γ
tk−1





.

In Tables 2 and 3 below, the parameter values α = 1, β = −2, γ = 1
2 and the initial

value x0 = 2 are considered. The small dispersion asymptotics with decreasing step size
gives a good approximation to the standard deviations of γ̂ε,n in all cases, while this type
of asymptotics gives reasonable values of the standard deviations of α̂ε,n and β̂ε,n except
that n ≤ 50 and ε ≥ 0.1. The biases of α̂ε,n and β̂ε,n are small in all cases, whereas γ̂ε,n

has a considerable bias when n ≤ 100 and ε ≥ 0.05. In this example, we can conclude
that our estimators have good approximations to the true parameters unless n ≤ 100
and ε ≥ 0.05.

5. Proofs

Let R denote a function (0, 1]×Rd → R for which there exists a constant C such
that |R(a, x)| ≤ aC(1 + |x|)C for all a, x. Set Gn

k = σ(ws; s ≤ tk).
In order to show Propositions 3.1, 3.2 and 3.3, we will need the following three lem-

mas. For their proofs, see the proofs of Lemmas 1, 2 and 3 in Sørensen and Uchida (2003).

Lemma 5.1. Suppose that (i)–(iii) in Assumption 2.1 hold true. Then

Eθ0 [P
i
k(θ0)|Gn

k−1] = R

(
1
n2

, Xtk−1

)
, (6)

Eθ0 [P
i1
k (θ0)P i2

k (θ0)|Gn
k−1] =

ε2

n
Ξi1i2

k−1(θ0) + R

(
ε2

n2
, Xtk−1

)
+ R

(
1
n3

, Xtk−1

)
, (7)

Eθ0 [P
i1
k (θ0)P i2

k (θ0)P i3
k (θ0)|Gn

k−1] = R

(
ε4

n2
, Xtk−1

)
+ R

(
ε2

n3
, Xtk−1

)
(8)

+R

(
1
n4

, Xtk−1

)
,

Eθ0




4∏

j=1

P
ij

k (θ0)|Gn
k−1


 =

ε4

n2

{
Ξi1i2

k−1Ξ
i3i4
k−1(θ0) + Ξi1i3

k−1Ξ
i2i4
k−1(θ0) (9)

+Ξi1i4
k−1Ξ

i2i3
k−1(θ0)

}
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Table 2: (G-CIR model) The mean and standard deviation of the estimators α̂ε,n and
β̂ε,n determined from 1000 independent simulated sample paths for α = 1, β = −2,
γ = 1

2 , x0 = 2.

α̂ β̂
n ε sim. mean sim. s.d. theor. s.d. sim. mean sim. s.d. theor. s.d.
50 0.1 0.992437 0.786250 0.649709 -1.988823 0.762534 0.614513

0.05 0.978790 0.499941 0.539011 -1.969653 0.479606 0.514339
0.01 0.986401 0.207842 0.221533 -1.969399 0.200037 0.212198
0.005 0.985218 0.106752 0.117400 -1.966752 0.102461 0.112468

100 0.1 1.071125 0.528710 0.524346 -2.066707 0.500329 0.492208
0.05 1.011104 0.396940 0.416521 -2.007135 0.378784 0.396113
0.01 0.998738 0.200012 0.206986 -1.991175 0.191955 0.198230
0.005 0.991891 0.108053 0.115054 -1.983417 0.103439 0.110215

500 0.1 1.074976 0.422729 0.388852 -2.073341 0.392405 0.358438
0.05 1.030149 0.272470 0.247245 -2.029448 0.257438 0.231460
0.01 1.003538 0.145504 0.146954 -2.003185 0.139485 0.140551
0.005 1.000715 0.094932 0.100372 -1.999986 0.090897 0.096117

1000 0.1 1.077343 0.389544 0.367892 -2.075833 0.360138 0.337478
0.05 1.030990 0.224366 0.213694 -2.030512 0.210320 0.198372
0.01 1.007646 0.112055 0.116839 -2.007784 0.107286 0.111574
0.005 1.004152 0.081759 0.088241 -2.004244 0.078307 0.084465

+R

(
ε4

n3
, Xtk−1

)
+ R

(
ε2

n4
, Xtk−1

)
+ R

(
1
n5

, Xtk−1

)
.

Lemma 5.2. Let f ∈ C̄∞↑ (Rd × Θ̄;R). Suppose that (i)–(iii) in Assumption 2.1
hold true. Then, in Pθ0-probability, as ε → 0 and n →∞,
(i)

sup
θ∈Θ̄

∣∣∣∣∣
1
n

n∑

k=1

f(Xtk−1 , θ)−
∫ 1

0

f(X0
s , θ)ds

∣∣∣∣∣ → 0,

(ii)

sup
θ∈Θ̄

∣∣∣∣∣
n∑

k=1

f(Xtk−1 , θ)P
i
k(θ0)

∣∣∣∣∣ → 0.

Lemma 5.3. Let f ∈ C̄∞↑ (Rd × Θ̄;R). Suppose that (i)–(iii) in Assumption 2.1
hold true and that limε→0,n→∞(εn)−1 = 0. Then, in Pθ0-probability, as ε → 0 and
n →∞,
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Table 3: (G-CIR model) The mean and standard deviation of the estimator γ̂ε,n de-
termined from 1000 independent simulated sample paths for α = 1, β = −2, γ = 1

2 ,
x0 = 2.

γ̂
n ε sim. mean sim. s.d. theor. s.d.
50 0.1 0.355375 0.285371 0.306180

0.05 0.372587 0.266187 0.284125
0.01 0.477732 0.111643 0.121770
0.005 0.495062 0.058836 0.064620

100 0.1 0.442129 0.209536 0.219472
0.05 0.435458 0.195823 0.210907
0.01 0.481312 0.105910 0.113568
0.005 0.493049 0.059536 0.063300

500 0.1 0.486971 0.095367 0.099254
0.05 0.487301 0.095008 0.098423
0.01 0.490580 0.073839 0.079485
0.005 0.495407 0.050871 0.055021

1000 0.1 0.496954 0.067205 0.070282
0.05 0.497049 0.066935 0.069986
0.01 0.496799 0.056946 0.062111
0.005 0.498125 0.043591 0.048154

(i)

ε−2
n∑

k=1

f(Xtk−1 , θ)P
i
kP j

k (θ0) →
∫ 1

0

f(X0
s , θ)[σσ∗]ij(X0

s , θ0)ds

uniformly in θ ∈ Θ̄. Moreover, if Assumption 2.2 holds true, then, in Pθ0-probability,
(ii)

ε−2
n∑

k=1

f(Xtk−1 , θ)P
i
kP j

k (θ) →
∫ 1

0

f(X0
s , θ)[σσ∗]ij(X0

s , θ0)ds

+M2

∫ 1

0

f(X0
s , θ)BiBj(X0

s , θ0, θ)ds

uniformly in θ ∈ Θ̄ as ε → 0 and n →∞.

Proof of Proposition 3.1. It follows from Lemmas 5.2 and 5.3 that in Pθ0-
probability,

1
n

Uε,n(θ) → U(θ, θ0)

uniformly in θ ∈ Θ̄ as ε → 0 and n →∞. This completes the proof. ut
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Proof of Proposition 3.2. We first consider the uniform convergence of Cε,n(θ).
An easy computation implies 1

n
∂2

∂θi∂θj
Uε,n(θ) = U ij

1,ε,n(θ) + U ij
2,ε,n(θ) + U ij

3,ε,n(θ), where

U ij
1,ε,n(θ) = − 2

ε2n

n∑

k=1

(
∂2

∂θi∂θj
b(Xtk−1 , θ)

)∗
Ξ−1

k−1(θ)
(

Pk(θ0) +
1
n

B(Xtk−1 , θ0, θ)
)

+
2

ε2n2

n∑

k=1

(
∂

∂θi
b(Xtk−1 , θ)

)∗
Ξ−1

k−1(θ)
(

∂

∂θj
b(Xtk−1 , θ)

)
,

U ij
2,ε,n(θ) = − 2

ε2n

n∑

k=1

(
∂

∂θi
b(Xtk−1 , θ)

)∗
∂

∂θj
(Ξ−1

k−1(θ))
(

Pk(θ0) +
1
n

B(Xtk−1 , θ0, θ)
)

− 2
ε2n

n∑

k=1

(
∂

∂θj
b(Xtk−1 , θ)

)∗
∂

∂θi
(Ξ−1

k−1(θ))
(

Pk(θ0) +
1
n

B(Xtk−1 , θ0, θ)
)

,

U ij
3,ε,n(θ) =

1
n

n∑

k=1

(
∂2

∂θi∂θj
log det Ξk−1(θ)

)
+

1
ε2

n∑

k=1

Pk(θ)∗
(

∂2

∂θi∂θj
Ξ−1

k−1(θ)
)

Pk(θ).

By Lemma 5.2, one has that in Pθ0 -probability, as ε → 0 and n →∞,

U ij
1,ε,n(θ) → −2M2

∫ 1

0

(
∂2

∂θi∂θj
b(X0

s , θ)
)∗

[σσ∗]−1(X0
s , θ)B(X0

s , θ0, θ)ds (10)

+2M2

∫ 1

0

(
∂

∂θi
b(X0

s , θ)
)∗

[σσ∗]−1(X0
s , θ)

(
∂

∂θj
b(X0

s , θ)
)

ds

=: U ij
1 (θ),

U ij
2,ε,n(θ) → −2M2

∫ 1

0

(
∂

∂θi
b(X0

s , θ)
)∗(

∂

∂θj
[σσ∗]−1(X0

s , θ)
)

B(X0
s , θ0, θ)ds(11)

−2M2

∫ 1

0

(
∂

∂θj
b(X0

s , θ)
)∗(

∂

∂θi
[σσ∗]−1(X0

s , θ)
)

B(X0
s , θ0, θ)ds

=: U ij
2 (θ),

U ij
3,ε,n(θ) →

∫ 1

0

∂2

∂θi∂θj
log det[σσ∗](X0

s , θ)ds (12)

+
∫ 1

0

tr
[
[σσ∗](X0

s , θ0)
(

∂2

∂θi∂θj
[σσ∗]−1(X0

s , θ)
)]

ds

+M2

∫ 1

0

tr
[
BB∗(X0

s , θ0, θ)
(

∂2

∂θi∂θj
[σσ∗]−1(X0

s , θ)
)]

ds

=: U ij
3 (θ)

uniformly in θ ∈ Θ̄. By (10), (11) and (12), we complete the proof of (i).
Next, by (iii) and (iv) in Assumption 2.1, U ij

1 (θ), U ij
2 (θ) and U ij

3 (θ) are continuous
with respect to θ, which completes the proof of (ii). ut

Proof of Proposition 3.3. We define ξi
k(θ0) and ηi

k(θ0) as follows:

− 1√
n

∂

∂θi
Uε,n(θ0)
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=

{
n∑

k=1

2
ε2
√

n

d∑

l1=1

[(
∂

∂θi
b(Xtk−1 , θ0)

)∗
Ξ−1

k−1(θ0)
]l1

P l1
k (θ0)

}

+



−

n∑

k=1

1√
n

∂

∂θi
log det Ξk−1(θ0)−

n∑

k=1

√
n

ε2

d∑

l1,l2=1

(
∂

∂θi
Ξ−1

k−1(θ0)
)l1l2

P l1
k P l2

k (θ0)





=:
n∑

k=1

ξi
k(θ0) +

n∑

k=1

ηi
k(θ0).

By Theorems 3.2 and 3.4 of Hall and Heyde (1980), it suffices to show that

n∑

k=1

Eθ0 [ξ
i
k(θ0) + ηi

k(θ0)|Gn
k−1] → 0, (13)

n∑

k=1

Eθ0 [(ξ
i1
k + ηi1

k )(ξi2
k + ηi2

k )(θ0)|Gn
k−1] → 4Ii1i2(θ0), (14)

n∑

k=1

Eθ0 [(ξ
i
k(θ0))4 + (ηi

k(θ0))4|Gn
k−1] → 0 (15)

in Pθ0 -probability, as ε → 0 and n →∞.

Proof of (13). It follows from Lemma 5.1–(6) that

n∑

k=1

Eθ0 [ξ
i
k(θ0)|Gn

k−1] =
n∑

k=1

R

(
1

ε2n2
√

n
,Xtk−1

)
→ 0

in Pθ0 -probability, as ε → 0 and n →∞. By Lemma 5.1–(7), we obtain that

n∑

k=1

Eθ0 [η
i
k(θ0)|Gn

k−1] =
n∑

k=1

{
− 1√

n

∂

∂θi
log det Ξk−1(θ0)

− 1√
n

tr
[
Ξk−1(θ0)

(
∂

∂θi
Ξ−1

k−1(θ0)
)]

+R

(
1

n
√

n
,Xtk−1

)
+ R

(
1

ε2n2
√

n
,Xtk−1

)}

=
n∑

k=1

{
R

(
1

n
√

n
,Xtk−1

)
+ R

(
1

ε2n2
√

n
,Xtk−1

)}
→ 0

in Pθ0 -probability, as ε → 0 and n →∞. ut

Proof of (14). By Lemma 5.1–(7), we have

n∑

k=1

Eθ0 [ξ
i1
k ξi2

k (θ0)|Gn
k−1]

=
4

ε4n

n∑

k=1

d∑

l1,l2=1

[(
∂

∂θi1

b(Xtk−1 , θ0)
)∗

Ξ−1
k−1(θ0)

]l1 [(
∂

∂θi2

b(Xtk−1 , θ0))
)∗

Ξ−1
k−1(θ0)

]l2
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×Eθ0 [P
l1
k P l2

k (θ0)|Gn
k−1]

=
4

ε2n2

n∑

k=1

∂

∂θi1

b(Xtk−1 , θ0)∗Ξ−1
k−1(θ0)

∂

∂θi2

b(Xtk−1 , θ0)

+
n∑

k=1

{
R

(
1

ε2n3
, Xtk−1

)
+ R

(
1

ε4n4
, Xtk−1

)}

→ 4Ii1i2
b (θ0)

in Pθ0 -probability as ε → 0 and n →∞. Using Lemma 5.1–(7) and (9), one has

n∑

k=1

Eθ0 [η
i1
k ηi2

k (θ0)|Gn
k−1]

=
1
n

n∑

k=1

{
tr

[
∂

∂θi1

Ξk−1(θ0)Ξ−1
k−1(θ0)

]
tr

[
∂

∂θi2

Ξk−1(θ0)Ξ−1
k−1(θ0)

]

−tr
[

∂

∂θi1

Ξk−1(θ0)Ξ−1
k−1(θ0)

]
tr

[
∂

∂θi2

Ξk−1(θ0)Ξ−1
k−1(θ0)

]

−tr
[

∂

∂θi2

Ξk−1(θ0)Ξ−1
k−1(θ0)

]
tr

[
∂

∂θi1

Ξk−1(θ0)Ξ−1
k−1(θ0)

]

+tr
[(

∂

∂θi1

Ξk−1(θ0)
)

Ξ−1
k−1(θ0)

]
tr

[(
∂

∂θi2

Ξk−1(θ0)
)

Ξ−1
k−1(θ0)

]

+2tr
[(

∂

∂θi1

Ξk−1(θ0)
)

Ξ−1
k−1(θ0)

(
∂

∂θi2

Ξk−1(θ0)
)

Ξ−1
k−1(θ0)

]}

+
n∑

k=1

{
R

(
1
n2

, Xtk−1

)
+ R

(
1

ε2n3
, Xtk−1

)
+ R

(
1

ε4n4
, Xtk−1

)}

→ 4Ii1i2
σ (θ0)

in Pθ0 -probability as ε → 0 and n →∞. By Lemma 5.1–(6) and (9), we obtain

n∑

k=1

Eθ0 [ξ
i
kηj

k(θ0)|Gn
k−1]

= − 2
ε2n

n∑

k=1

d∑

l1=1

[(
∂

∂θi
b(Xtk−1 , θ0)

)∗
Ξ−1

k−1(θ0)
]l1

∂

∂θj
log det Ξk−1(θ0)Eθ0 [P

l1
k (θ0)|Gn

k−1]

− 2
ε4

n∑

k=1

d∑

l1,l2,l3=1

[(
∂

∂θi
b(Xtk−1 , θ0)

)∗
Ξ−1

k−1(θ0)
]l1 (

∂

∂θj
Ξ−1

k−1(θ0)
)l2l3

×Eθ0 [P
l1
k P l2

k P l3
k (θ0)|Gn

k−1]

=
n∑

k=1

{
R

(
1
n3

, Xtk−1

)
+ R

(
1

ε2n3
, Xtk−1

)
+ R

(
1

ε4n4
, Xtk−1

)}
→ 0

in Pθ0 -probability as ε → 0 and n →∞. ut
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Proof of (15). Using Lemma 5.1–(iv), one has

n∑

k=1

Eθ0 [(ξ
i
k(θ0))4|Gn

k−1]

=
16

ε8n2

n∑

k=1

d∑

l1,l2,l3,l4=1

[(
∂

∂θi
b(Xtk−1 , θ0)

)∗
Ξ−1

k−1(θ0)
]l1 [(

∂

∂θi
b(Xtk−1 , θ0)

)∗
Ξ−1

k−1(θ0)
]l2

×
[(

∂

∂θi
b(Xtk−1 , θ0)

)∗
Ξ−1

k−1(θ0)
]l3 [(

∂

∂θi
b(Xtk−1 , θ0)

)∗
Ξ−1

k−1(θ0)
]l4

×Eθ0 [P
l1
k P l2

k P l3
k P l4

k (θ0)|Gn
k−1]

=
n∑

k=1

{
R

(
1

ε4n4
, Xtk−1

)
+ R

(
1

ε6n6
, Xtk−1

)
+ R

(
1

ε8n7
, Xtk−1

)}
→ 0

in Pθ0 -probability as ε → 0 and n →∞. We obtain

(ηi
k(θ0))4 ≤ 23

[
1
n2

(
∂

∂θi
log det Ξk−1(θ0)

)4

+(2d)3
n2

ε8

d∑

l1l2=1

[(
∂

∂θi
Ξ−1

k−1(θ0)
)l1l2

]4

(P l1
k P l2

k (θ0))4


 .

In the same way as Lemma 5.1, we have

Eθ0 [(P
l1
k P l2

k )4(θ0)|Gn
k−1] = R

(
ε8

n4
, Xtk−1

)
+ R

(
ε6

n5
, Xtk−1

)
+ R

(
ε4

n6
, Xtk−1

)

+R

(
ε2

n7
, Xtk−1

)
+ R

(
1
n8

, Xtk−1

)
.

Thus, one has

n∑

k=1

Eθ0 [(η
i
k(θ0))4|Gn

k−1] ≤
n∑

k=1

{
R

(
1
n2

, Xtk−1

)
+ R

(
1

ε2n3
, Xtk−1

)
+ R

(
1

ε4n4
, Xtk−1

)

+R

(
1

ε6n5
, Xtk−1

)
+ R

(
1

ε8n6
, Xtk−1

)}
→ 0

in Pθ0 -probability as ε → 0 and n →∞. This completes the proof. ut

Proof of Theorem 3.4. We begin by showing the consistency of θ̂ε,n. From a
version of Lemma 17 in Genon-Catalot and Jacod (1993), one has

log det[σσ∗](X0
t , θ) + tr

[
[σσ∗](X0

t , θ0)[σσ∗]−1(X0
t , θ)

] ≥ log det[σσ∗](X0
t , θ0) + d

with equality if and only if [σσ∗](X0
t , θ) = [σσ∗](X0

t , θ0). By (iv) in Assumption 2.1, we
obtain ∫ 1

0

B∗(X0
s , θ0, θ)[σσ∗]−1(X0

s , θ)B(X0
s , θ0, θ)ds ≥ 0
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with equality if and only if b(X0
t , θ) = b(X0

t , θ0). Thus, it follows from Assumption 2.3
that U(θ, θ0) ≥ U(θ0, θ0) with equality if and only if θ = θ0. Therefore, for any η > 0,

inf
θ:|θ−θ0|≥η

U(θ, θ0) > U(θ0, θ0). (16)

Moreover, it follows from the definition of θ̂ε,n and θ0 ∈ Θ̄ that for any η > 0,

Pθ0

[
Ūε,n(θ̂ε,n) ≤ Ūε,n(θ0) + η

]
→ 1 (17)

as ε → 0 and n → ∞, where Ūε,n(θ) = 1
nUε,n(θ). From (16), for every η > 0, there

exists η′ > 0 such that

inf
θ:|θ−θ0|≥η

U(θ, θ0) > U(θ0, θ0) + η′.

Furthermore, for every η > 0 there exists η′ > 0 such that

|θ̂ε,n − θ0| ≥ η ⇒ U(θ̂ε,n, θ0) ≥ inf
θ:|θ−θ0|≥η

U(θ, θ0) > U(θ0, θ0) + η′.

Thus, one has

Pθ0

[
|θ̂ε,n − θ0| ≥ η

]
≤ Pθ0

[
U(θ̂ε,n, θ0) > U(θ0, θ0) + η′

]

≤ Pθ0

[∣∣∣U(θ̂ε,n, θ0)− Ūε,n(θ̂ε,n)
∣∣∣ ≥ η′

3

]

+Pθ0

[
Ūε,n(θ̂ε,n)− Ūε,n(θ0) ≥ η′

3

]

+Pθ0

[∣∣Ūε,n(θ0)− U(θ0, θ0)
∣∣ ≥ η′

3

]

≤ 2Pθ0

[
sup
θ∈Θ̄

∣∣Ūε,n(θ)− U(θ, θ0)
∣∣ ≥ η′

3

]

+Pθ0

[
Ūε,n(θ̂ε,n) ≥ Ūε,n(θ0) +

η′

3

]

→ 0

as ε → 0 and n → ∞, where the last estimate is based on Proposition 3.1 and (17).
This completes the proof of the consistency of θ̂ε,n.

Using the consistency of θ̂ε,n and Propositions 3.2–3.3, we can show the asymp-
totic normality of θ̂ε,n along the same lines as the proof of the asymptotic normality of
Theorem 1 in Sørensen and Uchida (2003). This completes the proof. ut
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