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Abstract

A population of i parasites is distributed at random among M hosts; any host
carrying more than n parasites dies. We first find the expected numbers of hosts
carrying 0, 1, . . . , n parasites. Parasite-free hosts then produce offspring according
to a birth-death process over a breeding season T , while the parasites also breed
in a birth-death process, again killing any host carrying more than n of them at
time T . We find the expected number of surviving hosts and the total expected
number of surviving parasites after the breeding season. We illustrate the process
by a simple example.

Key Words and Phrases: Host, Parasite, Random allocation, Birth-death process, Survival

probability, Expected number of survivors.

1. Introduction

One of the problems which arises in animal and insect populations is their control
by the introduction of predators or parasites. A simple prey-predator model of this
kind was previously studied by Mertz and Davies (1968). In this paper, we consider
a simplified model where i parasites are introduced among M previously parasite-free
hosts; any host carrying more than n parasites dies. It is assumed that the initial dis-
tribution of parasites among hosts is a random allocation process, so that each parasite
selects a host with probability 1/M , independently of all other parasites. Once this
distribution is complete, only the parasite-free hosts breed over a breeding season T .

◦◦ ◦ ◦ ◦ ◦ ◦◦◦◦· · · · · ·

◦◦◦◦◦ ◦ ◦ ◦ ◦ ◦· · · · · ·
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M hosts

i parasites

Figure 1: Random allocation of parasites among hosts

The parasites on the other surviving hosts also breed, killing their hosts and themselves
if they exceed the number n at time T ; some hosts with parasites survive, and the total
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12 J. Gani

number of their parasites also survives until the next breeding season, when the process
is repeated. We begin with a random allocation model for the distribution of i parasites
among M hosts (see Feller (1968), Chapter 4.2).

We need to find the probability distribution

ps0s1...sn(i,M) = P
{
sj hosts with j parasites, j = 0, . . . , n; M−∑n

j=0
sj dead hosts

with n+1 or more parasites
∣∣ i parasites and M hosts initially

} (1)

This may be derived recursively by considering what happens if the number of parasites
increases to i + 1. In that case, we can readily see that

ps0s1...sn
(i + 1,M) = ps0s1...sn

(i,M)
(
1−∑n

j=0 sj/M
)

+ ps0+1,s1−1,...,sn(i,M) (s0 + 1)/M + · · · (2)
+ ps0s1...sn+1(i,M) (sn + 1)/M,

where the probability that the (i + 1)th parasite falls on a host with n + 1 or more
parasites is

1−
n∑

j=0

sj/M,

while the probability that it falls on a host with j = 0, 1, . . . , n parasites, to increase
the load from j to (j + 1) parasites is (sj + 1)/M . This model generalizes an earlier one
described by Gani (1991) in which n = 2.

A useful way to handle these probabilities is through their probability generating
function (pgf)

φiM (u0, u1, . . . , un) =
∑

s0s1...sn

ps0s1...sn(i,M)us0
0 us1

1 · · ·usn
n ,

0 < uj ≤ 1, j = 0, 1, . . . , n,

where φ0M (u0, . . . , un) = uM
0 ,

∑n
j=0 jsj ≤ i, and

∑n
j=0 sj ≤ M . Multiplying (2) by

us0
0 us1

1 · · ·usn
n and summing over all values of s0, s1, . . . , sn, we find that

φi+1,M (u0, . . . , un) = φiM (u0, . . . , un)

+
1
M

[
(u1 − u0)

∂φiM

∂u0
+ (u2 − u1)

∂φiM

∂u1
(3)

+ · · ·+ (1− un)
∂φiM

∂un

]
.

The difference-differential equation (3) may be used to construct the first few pgfs for
n ≥ 3, namely

φ0M (u0, . . . , un) = uM
0

φ1M (u0, . . . , un) = u1u
M−1
0

φ2M (u0, . . . , un) =
1
M

uM−1
0 u2 +

(
1− 1

M

)
uM−2

0 u2
1 (4)

φ3M (u0, . . . , un) =
1
M

uM−1
0 u3 +

3
M

(
1− 1

M

)
uM−2

0 u1u2

+
(

1− 1
M

)(
1− 2

M

)
uM−3

0 u3
1,
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or to derive the expected numbers of hosts carrying j = 0, 1, . . . , n parasites, as we shall
see in Section 2. For larger values of i, the pgf φiM (u0, . . . , un) becomes cumbersome;
it is fairly straightforward, however, to derive the expectations of the numbers of hosts
Yj(i), carrying j = 0, 1, . . . , n parasites, however large n may be.

2. Expected number of hosts carrying j parasites

We can readily derive E(Yj(i)), j = 0, 1, . . . , n, by differentiating (3) with respect
to uj to obtain for each j = 0, 1, . . . , n− 1,

∂φi+1M

∂uj
=

∂φiM

∂uj
+ M−1

[
(u1 − u0)

∂2φiM

∂u0∂uj
+ · · ·+ ∂φiM

∂uj−1

+ (uj − uj−1)
∂2φiM

∂uj−1∂uj
− ∂φiM

∂uj

+ (uj+1 − uj)
∂2φiM

∂u2
j

+ · · ·+ (1− un)
∂2φiM

∂un∂uj
(5)

+
∂φiM

∂uj−1
− ∂φiM

∂uj

]
.

For j = n, the formula holds with un+1 = 1. Setting all uj = 1, we find that

E(Y0(i + 1)) =
(

1− 1
M

)
E(Y0(i))

E(Yj(i + 1)) =
1
M

E(Yj−1(i)) +
(

1− 1
M

)
E(Yj(i)), j = 1, . . . , n.

(6)

This set of equations can be solved to yield

E(Yj(i)) = M

[(
i

j

)
(1− 1/M)i−j

M j

]
, j = 0, 1, . . . , n, (7)

a formula already derived in Johnson and Kotz (1977), p.114 by different methods in
the context of an urn model. Note that when j ≤ i, so that Yj(i) = 0 for j > i, these
expectations will add up to M if i ≤ n, but if n < i, then there will be an expected
number

D(i) = M


1−

n∑

j=0

(
i

j

)
(1− 1/M)i−j

M j


 (8)

of dead hosts. We can readily verify the equation (7); since E(Y0(0)) = M , we see
from (6) that E(Y0(i)) = M(1− 1/M)i, the result given in (7). For j > 0, on substitut-
ing (7) in equation (6), we obtain

E(Yj(i + 1)) = M

[(
i + 1

j

)
(1− 1/M)i+1−j/M j

]
.
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Asymptotic results follow when both i and M are very large, and i = cM , where c
is a positive constant, while n remains fixed and relatively small. We find that

E(Y0(i)) = Me−c,

E(Yj(i)) = Mcje−c/j!, j = 1, 2, . . . , n,
(9)

with the expected number of dead hosts when i > n being

D(i) = M


1−

n∑

j=0

cje−c/j!


 .

3. Expected number of surviving hosts after breeding

Once the i parasites have spread among the M hosts, we know that the expected
number of surviving hosts is

M −D(i) = M




n∑

j=0

(
i

j

)
(1− 1/M)i−j

M j


 , (10)

of which M [1− 1/M ]i are without parasites. Asymptotically, these numbers tend to

M


e−c

n∑

j=0

cj

j!


 , Me−c, (11)

respectively. What we now require is to follow these surviving hosts through a breeding
season of length T . The survivors will consist of parasite-free hosts which breed, and
of hosts carrying 1, 2, . . . , n parasites which do not breed, but for which the number of
parasites breeding on them will remain no larger than the death threshold n by the end
of the breeding season.

Let us first consider the parasite-free hosts, and assume that they breed according
to a birth-death process with birth and death rates a > 0 and b > 0 respectively, with
a > b. Then the expected number of survivors after the breeding season will be

M [1− 1/M ]ie(a−b)T ; (12)

when i = cM , both large, this tends to Me−c+(a−b)T . We now consider the hosts carrying
1, 2, . . . , n parasites, where these parasites also breed according to a birth-death process
with birth and death rates λ > 0 and µ > 0 respectively, and λ > µ.

The pgf of such a process starting with 1 ≤ j ≤ n parasites is given in Bartlett (1966),
Chapter 3 as

fj(u) =

[
µ

(
1− e(λ−µ)T

)− (
λ− µe(λ−µ)T

)
u

µ− λe(λ−µ)T − λ
(
1− e(λ−µ)T

)
u

]j

, 0 < u ≤ 1. (13)

Writing

A(T ) =
(
1− e(λ−µ)T

)/(
µ− λe(λ−µ)T

)
,

B(T ) =
(
λ− µe(λ−µ)T

)/(
µ− λe(λ−µ)T

)
,
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we see that (13) can be expressed as

fj(u) = [µ A(T )−B(T )u]j [1− λA(T ) u]−j .

When expanded, this leads to probabilities pjk(T ) of j initial parasites generating k
parasites by the end of the breeding season, having the form

pjk(T ) = (λA)k

min(j,k)∑
r=0

(µA)j−r(B/λA)r

(
j

r

)(
j − k − 1− r

j − 1

)
.

For a host to survive, together with its load of parasites, these must not exceed
the number n; thus, the probability of survival of a host with an initial number j of
parasites is

Pj(T ) =
n∑

k=0

pjk(T ).

The expected number of parasite offspring on a host starting with j parasites will be

mj(T ) =
n∑

k=0

kpjk(T ).

It follows that the total expected number of surviving hosts will be

M1 = M [1− 1/M ]i e(a−b)T + M




n∑

j=1

(
i

j

)
[1− 1/M ]i−j

M j
Pj(T )


 , (14)

while the expected number of parasites on surviving hosts will be

i1 = M




n∑

j=1

(
i

j

)
[1− 1/M ]i−j

M j
mj(T )


 . (15)

For i = cM , both large, these values tend asymptotically to

M1 = Me−c


e(a−b)T +

n∑

j=1

Pj(T )
cj

j!


 , (16)

and

i1 = Me−c




n∑

j=1

mj(T )
cj

j!


 . (17)

Assuming that these i1 parasites distribute themselves at random over the M1 hosts,
the process then starts all over again.
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4. A numerical example

In their recent paper, Herbert and Isham (2001) have concentrated on host–macro-
parasite infection mechanisms; the present paper focuses rather on the eradication of
noxious hosts. To illustrate our methods, let us suppose that entomologists are trying
to eradicate a noxious host using a population of parasites. We take M to be 1000, and
i = 10M , both very large so that c = 10, and the asymptotic approximations can be
used. Let us take n = 5, so that all hosts carrying 6 or more parasites will die, and
postulate that the host birth and death parameters are such that a− b = 0.69315, and
the breeding season is T = 1, so that e(a−b)T = 2. The parasite birth and death rates
will be taken as λ = 1.1 and µ = 0.9.

We find the pgf f1(u) of (13), when the host carries only 1 initial parasite to be

f1(u) = (0.44925 + 0.00167 u)/(1− 0.54908 u)
= 0.44925 + 0.24834 u + 0.13636 u2 + 0.07487 u3 + 0.04111 u4 + 0.02257 u5 + · · ·

so that P1(T ) = 0.9725, and m1(T ) = 1.02296.
The first 6 coefficients in increasing powers of u for the pgfs f2(u), f3(u), f4(u),

f5(u), as well as the values of Pj(T ) and mj(T ) are displayed in the Table below.

Table 1: Pgfs fj(u), probabilities Pj(T ) and expectations mj(T ).

1 u u2 u3 u4 u5

f2(u) 0.20183 0.22314 0.18420 0.13501 0.09272 0.06112

f3(u) 0.09067 0.15037 0.16568 0.15193 0.12530 0.09641

f4(u) 0.04073 0.09006 0.12413 0.13668 0.13159 0.11577

f5(u) 0.01830 0.05058 0.05636 0.10775 0.11811 0.11871

P2(T )= 0.89802 m2(T )= 1.67305

P3(T )= 0.78036 m3(T )= 1.92077

P4(T )= 0.63896 m4(T )= 1.85357

P5(T )= 0.40093 m5(T )= 1.55254

From equations (16) and (17), we calculate M1 = 35.7 and i1 = 111.19, so that in
this case the hosts DEFANGED.22 are nearly wiped out. Similar calculations for c = 5
instead of 10 lead to M1 = 413.91 and i1 = 1042.66; thus, if n = 6 parasites are required
to kill their hosts, the value of c must be large enough for eradication to be effective. In
this case c = 10 seems a sufficiently large value to be effective.

In some cases, for example when the breeding season is known to be N times as long
for the host as for the parasite, it may prove convenient to consider an equivalent model
in discrete time. This slightly different approach consists of discretizing the parasite
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birth-death process, so that we can represent it as a random walk with probabilities

p =
λ

λ + µ
, q =

µ

λ + µ

of birth and death respectively. If Xk is the number of parasites at the k-th step, the
process will have the transition probability matrix

Xk+1 = 0 1 2 3 4 5 6

Xk = 0 1 0 0 0 0 0 0

1 q 0 p 0 0 0 0

2 0 q 0 p 0 0 0

3 0 0 q 0 p 0 0

4 0 0 0 q 0 p 0

5 0 0 0 0 q 0 p

6 0 0 0 0 0 0 1

=


 P Q

0 1


 . (18)

Here, 0 is the state where all parasites have died but the host remains alive, while 6 is
the state where both host and parasites have died, since 6 is above the threshold n = 5.

We consider what happens after a breeding season of length T consisting of N steps,
where we shall assume that N is known; we now specify that the number of parasites
on a surviving host always remains at or below the threshold n = 5. Note that this is
different from the previous assumption in the continuous time case, where the process
ended with 5 or fewer parasites at time T , but was allowed to exceed this threshold at
some time t < T .

For a host with an initial number j = 1, 2, 3, 4, 5, of parasites, the probability of
survival of the host will be

Pj(N) = e′j PNE, (19)

where e′j = [0, . . . , 1, . . . , 0] is a 1 × 6 row vector with a single 1 in the column corre-
sponding to the j initial parasites, and E′ = [1, 1, 1, 1, 1, 1]. The expected number of
parasites on a surviving host with j initial parasites is

mj(N) = e′j PNL, (20)

where L′ = [0, 1, 2, 3, 4, 5].
For λ = 1.1, µ = 0.9, p and q take the values 0.55 and 0.45 respectively. We adopt

two arbitrary values N = 8 and N = 16 for the number of steps in the breeding season
of length T = 1, and set M = 1000, and c = 10 as before. In these cases, we find that

M1 = 1000


e−c


e(a−b)T +

5∑

j=1

10j

j!
Pj(N)





 , (21)

while

i1 = 1000


e−c




5∑

j=1

10j

j!
mj(N)





 . (22)
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From these equations, we calculate for N = 8 and N = 16 respectively

M1 = 20.67 and 4.81,
i1 = 60.62 and 14.78.

The first results (20.67 and 60.62) are respectively 58% and 55% of the values
(35.7 and 111.19) obtained with the earlier continuous time model, and are roughly
comparable to them. The second (4.81 and 14.78) are both 13% of (35.7 and 111.19).
In the present more accurate procedure, the appropriate value of N which parallels the
previous model lies close to 8.
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