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Numerical computations of cavity flow problems by a pressure
stabilized characteristic-curve finite element scheme
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Abstract We apply a newly developed characteristic-curve finite element scheme to cavity flow problems.
The scheme is useful for large scale computation, because P1/P1 element is employed and the matrix of
resulting linear system is symmetric. Numerical results of two- and three-dimensional cavity flow problems
are presented. Three types of the Dirichlet boundary condition, discontirD®asdC! continuous ones,

are treated, and the difference of the solutions is discussed.
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1 Introduction

In this paper we present numerical results of cavity flow
problems by a newly developed characteristic-curve finite
element scheme[17]. The classical cavity flow problem,
whose Dirichlet boundary condition is given by a dis-
continuous function, is well known as a benchmark one
for incompressible fluid flows. Many authors solve the
problem, such as Cruchaga anda®e[5], Ghia et al.[8],
Kondo et al.[12], Nallasamy and Prasad[15], Tabata and
Fujima[23] in 2D, Fujima et al.[7], lwatsu et al.[10],
Jiang et al.[11], Ku et al.[13] in 3D, and so on. We com-
pute the problem in 2D too.

However, we have some doubt on solving the classical
cavity flow problem, because the problem has no weak
solution. Therefore, we also compute two other cavity
flow problems in 2D and 3D, which are regularizeddy
andC! continuous functions to be used for the Dirichlet
boundary condition.

The characteristic-curve method is based on an ap-
proximation of the material derivative along the trajectory
of the fluid particle, and is natural from the physical point
of view. The method has an advantage that the matrix for
the system of linear equations is symmetric, which leads
to symmetric linear solvers.

Several characteristic-curve finite element schemes for
the Navier-Stokes equations of first and second order in
time have been developed by Boukir et al.[2], the author
and Tabata[16], Pironneau[1B]9] and Sili[21]. These
schemes impose the inf-sup condition[g] for the finite

tation. Since the P1/P1 element does not satisfy the inf-
sup condition, a pressure stabilization method by Brezzi
and Douglas Jr.[3] is used. The scheme is an implicit and
mixed one. It has been shown that the numerical conver-
gence order to an exact solution is first in both time and
space in the paper[17]. The scheme has such advantages
that the matrix is symmetric and that it is useful for large
scale computation. Considering to find a stationary so-
lution of the nonstationary Navier-Stokes equations, we
apply the scheme to cavity flow problems.
For a domainQ c RY(d = 2,3) we use the Sobolev

spaces.?(Q) andH(Q), and their subspace

LﬁQ){qeL?uD;A;quo}.

We denote by-, ) theL?(Q)-inner products in the scalar-
, vector- and matrix-valued function spaces||bylo their
norms and by - ||1 the norm inH(Q)9. The dual pairing
between a spac¥ and the dual spac¥’ is denoted by
().

The outline of this paper is as follows. We set cav-
ity flow problems in Section 2. A pressure stabilized
characteristic-curve finite element scheme for the Navier-
Stokes equations is reviewed in Section 3. In Section 4
we show numerical results of two- and three-dimensional
cavity flow problems.

2 Cauvity flow problems

elements to be used, e.g., P2/P1 element, which requires Let Q c RY (d = 2,3) be a bounded domain anfd =

large memory.
Recently a pressure stabilized characteristic-curve fi-

0Q be the boundary of2. We consider the stationary
Navier-Stokes problem subject to the Dirichlet boundary

nite element scheme for the Navier-Stokes equations has condition; find(u, p) : Q — RY x R such that

been proposed by the author and Tabata[17]. The scheme
employs a cheap element P1/P1, i.e., velocity and pres-

sure are both approximated by the piecewise linear el-
ements in triangles (2D) or tetrahedra (3D). The P1/P1
element is useful especially in three-dimensional compu-
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where u is the velocity, p is the pressureRe is the ) = {16X1(1—x1)x2(1—x2)}2 (x3=1)
Rey_nolds number f is an external forceD(u) is the ) = 0 (otherwise’
strain-rate tensor defined by

g2=93=0. (C1-3D)
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2.1 Two- and three-dimensional cavity flow
problems
For cavity flow problems the domai? = (0, 1)d is an O u=0 1 h
unit square or cube anfi= 0. We set two-dimensional
cavity flow problems with four Dirichlet boundary con- & (D) a0
ditions. . N
Problem 1 (2D). In (1) we take Re= 100, 1,000 and
5,000, and consider four boundary conditions as follows
(see Fig. 1).
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2 Figure 1. An image of cavity flow problems in 2D (top)
gi(X) = {a(l-x)}" (e=1) g = 0. and graphs ol (-, 1) for the boundary conditions (DCO)
0 (otherwisg ’ (middle left), (DC1) (middle right), (CO) (bottom left)

(C1) and (C1) (bottom right).

The problem with the boundary condition (DCO)
or (DC1) is known as a benchmark one. The differ-
ence between the boundary conditions (DCO) and (DC1)
is the values ofy; at only two cornergx;,xz) = (0,1) 1
and(1,1). In the cases of the boundary conditions (DCO)
and (DC1), there does not exist a weak solution, i.e., Q
(u,p) ¢ HY(Q)? x L2(Q). But we set these problems P
to compare with the preceding results by Ghia et al.[8]
and see the the difference of valueggefat the two cor- e
ners. We can regularize these problems by considering ' 1
the boundary conditions (CO0) or (C1).

Below is three-dimensional cavity flow problems with CQERY

0 and C! continuous types of the Dirichlet boundary
condition.
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Problem 2 (3D). In (1) we take Re= 100 400 and
1,000, and consider two boundary conditions as follows
(see Fig. 2).
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Figure 2: An image of cavity flow problems in 3D

g1(X) = 16 (1-x)xe(l—%) (x3=1) (top) and graphs ody (-, -, 1) for the boundary conditions
0 (otherwise ’ (C0-3D) (bottom left) and (C1-3D) (bottom right).
92=03=0, (C0-3D)



3 Review of a pressure stabilized
characteristic-curve finite ele-
ment scheme

In this section we review a pressure stabilized
characteristic-curve finite element scheme for the Navier-
Stokes equations in the paper[17].

Let T be a positive constant. We consider the non-
stationary Navier-Stokes problem subject to the Dirichlet
boundary condition; findu, p): Q x (0,T) — R4 xR
such that

Jau

2 .
E-I-(U'D)U—R—eDD(U)—H]pff in Q x (0,T),
O-u=0 inQx(0,T),
u=g onl x(0,T),
u=u’ inQ,att=0.
)

We assumd = f(x,t) andg = g(x,t) only in this section
to review the scheme for such general functions.

3.1 An idea of a characteristic-curve
method

We explain an idea of a characteristic-curve method of
first order in time simply.

Let At be a time increment anfdr = [T /At] be a total
step number. We sét' = nAt for n e NU {0}. For a
function ¢ on Q x (0,T) or I" x (0,T) and an integer
n (0<n<Nr), ¢" meansp” = ¢(-,t"). For a velocity
w: Q — RY, we defineX; (w,At) : Q — RY by

X1 (w, At)(X) = x— w(X)At.

We use the symbob to designate the composition of
functions, e.qg., for a functiop defined inQ

(@o Xy (W,AL))(X) = @(Xg (W, At)(X)).

Letu: Q x (0,T) — RY be a smooth function and :
(0,T) — RY be a solution of the ordinary differential

equation,
X'(t)
X(t")

fora pointx € Q and anintegen (1 <n<Ny). Then, the
material derivative of a smooth functign Q x (0,T) —
R att =t" is approximated as follows;

u(X,t) in ("L,
X7

®3)

(% +u- D) (p(X,t) = %(P(X(t)vt)
@"(X(t") — g™ H(X(t" )

_ : o)
n n—1 n—1
_ Qo —Q OAXl(u ,At) (X) +C)(At)7
t
(4)

where we have used the relation,

X (1) = Xg (UL, At) (x) + O(At?).

For the Navier-Stokes equations, substituting(i =
1,---,d) into @ in (4), we get the approximation of the
material derivative ofi att =1t",

u? —u" Lo Xy (UMt At)
At

(0u+(u-D)u) (xt) = (X) + O(At).

at
3.2 Afinite element scheme

Let 9, = {K} be a triangulation of2, where subscript
h means representative length of the triangulation. We
defineQy, by

Qn=int | J{K; Ke F}

and the boundari}, = d Q. For a vector valued function
gonl we set finite element spaces,

X ={Vh € C%(@n)%; Wnlk € P(K)?, VK € i},
Mn ={dh € C°(Qn); tnlk € P1(K), VK € Zh},
Vh(g) E{Vh € Xn; Vh(P) = g(P), VP e I_h},
Vh=VWh(0), Qn= MnNL3(Qn),

(6)
whereP is any nodal point orf,,. Let I, be the in-
terpolation operatorifronﬁio(Qh)d to X,. For an ex-
ternal forcef € C°(Q x [0,T])Y, f" meansnf". For
u,we HY(Q,)9 we define linear forms#(u,w,At) and
ﬁ}? onV,

u—wo Xg(w,At)
( At ’ Vh)’
<9f!|17 Vh> = (ff?7 Vh)a

(cdln(u, Wi 1), iy

and bilinear formsa,, b, and %, on H(Qp)? x
HL(Qn)®, HY(Qn)9 x L2(Qp) andH(Qp) x HY(Qy), re-
spectively,

s~

an(u,v) = — (D(u), D(v)),

bh(V,q) = - (va q)a

Gpa=-23 3 h& (Op, 0a) -
Keh

Here d is a positive constantyk is the diameter of el-
ementK and (-,-)x represents th&?-inner product on
elementK.

We write the scheme for (2) in the paper[17] again;
find {(up, ph) € Va(g") x Qn; n=1,--- Ny} such that,
forn=1,--- N,

(A (UR, UD™E; L), Vi) + @n (U, Vi) + b (Vh, PR)
+ bn(uf, an) + Gh(Ph, Oh) = (P Vi),
V(Vh,Gh) € Vh x Qn,

(6)

whereu? is a function approximating’.

Using the same given functiorfsandg in (1) for (2)
and solving the scheme (6), we find a numerical station-
ary solution of (2) as a solution of (1).

Remark 1. In cases of solving cavity flow problenis =
On, I =Ty, f=0and g=g(x).



Remark 2. For cavity flow problems, we sef as the
solution of the stationary Stokes equations with the same
boundary condition u=g onI". Since § is not given
explicitly, we compute the solutidmy, ri,) € Vh(g) x Qn

of the problem;

&n(Wh, Vh) + bn(Vh, Th) 4+ bn(Wh, ah) + Gh(rh,an) =0,
V(Vh,0h) €Vh x Qn,  (7)

whered, is a, with Re= 1, and set f§ = wh,.

4 Numerical results

In this section we show two- and three-dimensional nu-
merical results of cavity flow problems by the scheme (6).
The scheme has numerical convergence o@ér+ At)

to exact solutions, which has been recognized for Exam-
ples 1 and 3 in the paper[17]. Therefore, if there exists
a (sufficiently smooth) unique solution of (2), we can ex-

4.1 Two-dimensional cavity flow problems,
Problem 1

In this subsection we show numerical results for Prob-
lem 1.

We used FreeFem++[6] for mesh generation. Consid-
ering the boundary layers, we used nonuniform meshes
refined near the boundary. Fig. 3 shows the meshes, and
we call the meshes Fine and Coarse meshes, respectively.
These two meshes are similar around the center of the do-
main. The discretization parameters for the meshes are
shown in Table 1, whergn, is a minimum element size.
Table 2 shows values @it used for Problem 1. For high
Reynolds number problems an approximation of the non-
linear convection term is important. In the scheme, the
approximation depends on not oriiyout alsoAt. This is
the reason why we change the valued\bficcording to
the Reynolds numbers.

pect the solution by the scheme to converge to the exact Table 1: Discretization parameters for meshes in Fig 3.

one ash andAt go to 0.

We use the CR method[14] with the point Jacobi
preconditioner[1] for solving the system of linear equa-
tions, which works for our symmetric matrix. In the
scheme we have to compute a integral,

/uﬂ‘loxl(uﬂ‘l,At)vh dx

K

on triangular elements. The integrand
uﬂ’loxl(uﬂfl,At)vh

is not smooth orK. It is known that rough numerical
integration causes oscillation even in the case that the
stability is theoretically proved for a scheme with exact

Mesh # of nodes #of elements hmin
Fine 11470 21,914 276x10°3
Coarse 5403 10,282 552x10°°

Table 2: Values of\t used for Problem 1.

At
Re Fine mesh Coarse mesh
100 1/100 1/50
1,000 1/200 1/100
5,000 1/800 1/400

The numerical solutions converged to stationary solu-

integration, see the papers by Tabata[22] and Tabata and ionS in the sense of satisfying the inequality

Fujima[24]. The two solutions using numerical integra-
tion formula of degree two (2D: three points, 3D: four
points) and five (2D: seven points, 3D: fifteen points)[20]
are almost same for Examples 1 and 3 in the paper[17].
Therefore, in all the following computations we use the
numerical integration formula of degree two.

LetNg be the division number of each side®f (u, p)
and (up, pn) be the solutions of the problem (2) and the
scheme (6), respectively, ang= [t /At] be the step num-
ber fort € N. Setting a norm

1
1V D22 = ﬁllvllﬁ llallo

in the product spacd(Q)? x L?(Q), fort e N\ {1} we

defineDiff ; by

(R PR — (U~ PR ) k2
(U™ PR ) 12

which represents a difference of the solution at tirhes
andt — 1. We setd = 0.2 and 005 for 2D and 3D prob-

Diff, =

)

Diff, < 10°°. (8)

The times of convergence are listed in Table 3. Since
we have definediff, for only t € N\ {1}, the times

in the table are integers. For eaB® Figs. 4, 6 and 8
and Figs. 5, 7 and 9 show the graphsugf(0.5,-) and
upz(+,0.5) of the two stationary solutions on Fine and
Coarse meshes and the streamlines of stationary solu-
tions on Fine mesh, respectively. For the boundary con-
ditions (DCO0) and (DC1), we plot the results by Ghia et
al.[8] in the graphs. In the cases of the boundary condi-
tions (C0) and (C1), the graphs by the two stationary so-
lutions are almost same, and the streamlines exhibit the
flow patterns well.

In the cases of the boundary conditions (DCO)
and (DC1), although there does not exist a weak solution,
the numerical solution exists. F&e= 100 and 1000
of (DCO0) andRe= 100 of (DC1), the graphs by the two
stationary solutions are almost same and are similar to
the results by Ghia et al. Fé&te= 5,000 of (DCO0) and
Re= 1,000 and 5000 of (DC1), there are differences in

lems, respectively. These values are the same as the onesthe graphs by the two stationary solutions, and the solu-

in the paper[17].

tions on Fine mesh are more close to the results by Ghia
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Figure 3: Meshes used for Problem 1, Fine m@sh =
256), the mesh magnified around the cornéxg x) =
(0,1) and(1,1), Coarse meskNg = 128) and the mesh
magnified around the corners (top to bottom).

et al. than ones on Coarse mesh. The difference between
the boundary conditions is the values@fat only two
cornergxz,x2) = (0,1) and(1,1). However, there are ev-
ident differences of the streamlines by the two boundary
conditions in the three Figs. 5, 7 and 9. The similar re-
sults have been reported by Cruchaga andt@[5]. They
have shown the comparison of graphsugf(0.5,-) and
upz(+,0.5) for (DCO) and (DC1) withRe= 1,000, 5,000

and 10000.

Table 3: Convergence times.

t(eN)
Re Fine mesh Coarse mesh
(DCO0): 100 15 15
1,000 85 92
5,000 370 358
(DC1): 100 15 15
1,000 87 87
5,000 352 399
(CO): 100 16 16
1,000 92 91
5,000 372 373
(C1): 100 17 17
1,000 91 90
5,000 356 360

4.2 Three-dimensional cavity flow prob-
lems, Problem 2

In this subsection we show numerical results for Prob-
lem 2. The finite element subdivision of the domain is
constructed by dividing the domain into a union of tri-
angular prisms and further subdividing each triangular
prism into three tedrahedra. In this process, a triangu-
lar mesh of the two-dimensional domain= (0,1)? by
FreeFem++ is used.

Considering the boundary layers, we used nonuniform
two meshes in Fig. 10. We call the meshes Fine and
Coarse meshes, respectively, whose discretization param-
eters are shown in Table 4. In three-dimensional case, for
all the Reynolds numbers we g&t=1/32 for Fine mesh
andAt = 1/24 for Coarse mesh.

The numerical solutions converged to stationary so-
lutions in the sense of satisfying the inequality (8).
The times of convergence are listed in Table 5.
Figs. 11, 15 and 19 show the graphagif(0.5,0.5,-) and
ups(+,0.5,0.5) of the two stationary solutions on Fine and
Coarse meshes for the two boundary conditions (C0-3D)
and (C1-3D) for eactRe The graphs of the two sta-
tionary solutions are almost same. Figs. 12-14, 16-18
and 20-22 are projections of velocity vectors on each
plane for eactRe which exhibit the flow patterns well
of these problems.
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Table 4: Discretization parameters for meshes in Fig 10.
Mesh fof nodes t{ of elements Pmin

Fine 172965 972288 516x10°°
Coarse 74627 410688 709x10°°

Table 5: Convergence times.

t(eN)
Re Fine mesh Coarse mesh X3

(CO-3D):. 100
400
1,000

12
32
58

12
32
58

(C1-3D). 100
400
1,000

11
33
53

11
33
53

Figure 12: Projections of velocity vectors on the plane
x2 = 0.5, Re= 100, (C0-3D) (top) and (C1-3D) (bottom).
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Figure 13: Projections of velocity vectors on the plane

Figure 15: Graphs ofin; (0.5,0.5, ) andupg(-,0.5,0.5),

100, (C0-3D) (top) and (C1-3D) (bottom).
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Figure 14: Projections of velocity vectors on the plane

Figure 16: Projections of velocity vectors on the plane

400, (C0-3D) (top) and (C1-3D) (bottom).
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Figure 17: Projections of velocity vectors on the plane

1,000, (C0-3D) (top) and (C1-3D) (bottom).

Figure 19: Graphs ofin; (0.5,0.5,-) and uys(+,0.5,0.5),

Re

400, (C0-3D) (top) and (C1-3D) (bottom).
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1,000, (C0-3D) (top) and (C1-3D) (bot-

X2 = 0.5, Re=

tom).

400, (C0-3D) (top) and (C1-3D) (bottom).

0.5,Re=

)(3:

11



PR IRV APEN
R
ot v,
N A
.t AR
i AR
s NNV
i NNV
L/ NNN
L NN
s NN\
s NN
" NN
11/ NN
117 A
117 AN
117 NS
%1=0.5 17 NN
117 NN
1 N\
1 N
X3 \
i DARRS
IRARRE AR
AN A
VAN a
A N —— B
2
R i
et A ]
A‘,f/fff/fz :T\\H\\>\,
Siaart bl Pt ot
IR/ NN
Ciarrrtbtlt TINNNNN
NN FEENNANNN
AR AR
RN AR TIVNANNNN O
RN AR PEANNNAN N
YA TEVUNNNNNNN
IR TV
RN AR R
11l L AANNRNSNNN N
IR SIS AN NNNSSNNY L
V11777 I AR S SN
RS2 AR AN NN A ]
1017 s 7P DT AN N s N N
x.=0.5 R st AN ~~NA L
1=V IR 2 AN SNV
R Pl AN SN
BRREE> VARERENN sV g
B Il NN N |
X3 vttty ot N AR
[ I PRI vttty
EERER . AR
[ ISR s r bt
RN orin
2
Figure 21: Projections of velocity vectors on the plane
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5 Conclusions

We have applied a newly developed characteristic-curve
finite element scheme to cavity flow problems. The
scheme uses a cheap element P1/P1 with pressure stabi-
lization method, and the matrix of resulting linear system
is symmetric and identical. Therefore, the scheme leads
to symmetric linear solvers and easy large scale com-
putations. We have solved two- and three-dimensional
cavity flow problems with the Reynolds numbers up to
5,000 (2D) and 1,000 (3D). In the two-dimensional case,
we have observed the difference of solutions by the three
types of the Dirichlet boundary condition, discontinuous,
CY andC* continuous ones. From the difference of the so-
lutions of the problems with boundary conditions (DCO)
and (DC1), we have seen the influence of the discontinu-
ity of g1. For problems with continuous boundary con-
ditions in 2D and 3D, the streamlines and velocity vec-
tors obtained have shown the flow patterns well. These
results imply that the scheme can be applied for the prac-
tical problem.

The computations in this paper were carried out on
IBM eServer p5 595 (power 5, 1.9GHz) with IBM XL
C/C++ Enterprise Edition V7.0 at Research Institute for
Information Technology of Kyushu University.
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