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Numerical computations of cavity flow problems by a pressure
stabilized characteristic-curve finite element scheme
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Abstract We apply a newly developed characteristic-curve finite element scheme to cavity flow problems.
The scheme is useful for large scale computation, because P1/P1 element is employed and the matrix of
resulting linear system is symmetric. Numerical results of two- and three-dimensional cavity flow problems
are presented. Three types of the Dirichlet boundary condition, discontinuous,C0 andC1 continuous ones,
are treated, and the difference of the solutions is discussed.
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1 Introduction

In this paper we present numerical results of cavity flow
problems by a newly developed characteristic-curve finite
element scheme[17]. The classical cavity flow problem,
whose Dirichlet boundary condition is given by a dis-
continuous function, is well known as a benchmark one
for incompressible fluid flows. Many authors solve the
problem, such as Cruchaga and Oñate[5], Ghia et al.[8],
Kondo et al.[12], Nallasamy and Prasad[15], Tabata and
Fujima[23] in 2D, Fujima et al.[7], Iwatsu et al.[10],
Jiang et al.[11], Ku et al.[13] in 3D, and so on. We com-
pute the problem in 2D too.

However, we have some doubt on solving the classical
cavity flow problem, because the problem has no weak
solution. Therefore, we also compute two other cavity
flow problems in 2D and 3D, which are regularized byC0

andC1 continuous functions to be used for the Dirichlet
boundary condition.

The characteristic-curve method is based on an ap-
proximation of the material derivative along the trajectory
of the fluid particle, and is natural from the physical point
of view. The method has an advantage that the matrix for
the system of linear equations is symmetric, which leads
to symmetric linear solvers.

Several characteristic-curve finite element schemes for
the Navier-Stokes equations of first and second order in
time have been developed by Boukir et al.[2], the author
and Tabata[16], Pironneau[18],[19] and S̈uli[21]. These
schemes impose the inf-sup condition[4],[9] for the finite
elements to be used, e.g., P2/P1 element, which requires
large memory.

Recently a pressure stabilized characteristic-curve fi-
nite element scheme for the Navier-Stokes equations has
been proposed by the author and Tabata[17]. The scheme
employs a cheap element P1/P1, i.e., velocity and pres-
sure are both approximated by the piecewise linear el-
ements in triangles (2D) or tetrahedra (3D). The P1/P1
element is useful especially in three-dimensional compu-

tation. Since the P1/P1 element does not satisfy the inf-
sup condition, a pressure stabilization method by Brezzi
and Douglas Jr.[3] is used. The scheme is an implicit and
mixed one. It has been shown that the numerical conver-
gence order to an exact solution is first in both time and
space in the paper[17]. The scheme has such advantages
that the matrix is symmetric and that it is useful for large
scale computation. Considering to find a stationary so-
lution of the nonstationary Navier-Stokes equations, we
apply the scheme to cavity flow problems.

For a domainΩ ⊂ Rd (d = 2,3) we use the Sobolev
spacesL2(Ω) andH1(Ω), and their subspace

L2
0(Ω) ≡

{
q∈ L2(Ω);

∫
Ω

q dx= 0

}
.

We denote by(·, ·) theL2(Ω)-inner products in the scalar-
, vector- and matrix-valued function spaces, by∥·∥0 their
norms and by∥·∥1 the norm inH1(Ω)d. The dual pairing
between a spaceX and the dual spaceX′ is denoted by
⟨·, ·⟩.

The outline of this paper is as follows. We set cav-
ity flow problems in Section 2. A pressure stabilized
characteristic-curve finite element scheme for the Navier-
Stokes equations is reviewed in Section 3. In Section 4
we show numerical results of two- and three-dimensional
cavity flow problems.

2 Cavity flow problems

Let Ω ⊂ Rd (d = 2,3) be a bounded domain andΓ ≡
∂Ω be the boundary ofΩ . We consider the stationary
Navier-Stokes problem subject to the Dirichlet boundary
condition; find(u, p) : Ω → Rd ×R such that

(u·∇)u− 2
Re

∇D(u)+∇p = f in Ω ,

∇ ·u = 0 in Ω ,

u = g onΓ ,

(1)
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where u is the velocity, p is the pressure,Re is the
Reynolds number,f is an external force,D(u) is the
strain-rate tensor defined by

Di j (u) ≡ 1
2

( ∂ui

∂x j
+

∂u j

∂xi

)
(i, j = 1, · · · ,d)

and

[
∇D(u)

]
i ≡

d

∑
j=1

∂Di j (u)
∂x j

(i = 1, · · · ,d).

2.1 Two- and three-dimensional cavity flow
problems

For cavity flow problems the domainΩ ≡ (0, 1)d is an
unit square or cube andf ≡ 0. We set two-dimensional
cavity flow problems with four Dirichlet boundary con-
ditions.

Problem 1 (2D). In (1) we take Re= 100, 1,000 and
5,000, and consider four boundary conditions as follows
(see Fig. 1).

g1(x) =

{
1 (x1 ̸= 0,1, x2 = 1)
0 (otherwise)

, g2 = 0, (DC0)

g1(x) =

{
1 (x2 = 1)
0 (otherwise)

, g2 = 0, (DC1)

g1(x) =

{
4x1(1−x1) (x2 = 1)
0 (otherwise)

, g2 = 0, (C0)

g1(x) =

{{
4x1(1−x1)

}2 (x2 = 1)
0 (otherwise)

, g2 = 0.

(C1)

The problem with the boundary condition (DC0)
or (DC1) is known as a benchmark one. The differ-
ence between the boundary conditions (DC0) and (DC1)
is the values ofg1 at only two corners(x1,x2) = (0,1)
and(1,1). In the cases of the boundary conditions (DC0)
and (DC1), there does not exist a weak solution, i.e.,
(u, p) /∈ H1(Ω)2 × L2(Ω). But we set these problems
to compare with the preceding results by Ghia et al.[8]
and see the the difference of values ofg1 at the two cor-
ners. We can regularize these problems by considering
the boundary conditions (C0) or (C1).

Below is three-dimensional cavity flow problems with
C0 andC1 continuous types of the Dirichlet boundary
condition.

Problem 2 (3D). In (1) we take Re= 100, 400 and
1,000, and consider two boundary conditions as follows
(see Fig. 2).

g1(x) =

{
16x1(1−x1)x2(1−x2) (x3 = 1)
0 (otherwise)

,

g2 = g3 = 0, (C0-3D)

g1(x) =

{{
16x1(1−x1)x2(1−x2)

}2 (x3 = 1)
0 (otherwise)

,

g2 = g3 = 0. (C1-3D)
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Figure 1: An image of cavity flow problems in 2D (top)
and graphs ofg1(·,1) for the boundary conditions (DC0)
(middle left), (DC1) (middle right), (C0) (bottom left)
and (C1) (bottom right).
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Figure 2: An image of cavity flow problems in 3D
(top) and graphs ofg1(·, ·,1) for the boundary conditions
(C0-3D) (bottom left) and (C1-3D) (bottom right).
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3 Review of a pressure stabilized
characteristic-curve finite ele-
ment scheme

In this section we review a pressure stabilized
characteristic-curve finite element scheme for the Navier-
Stokes equations in the paper[17].

Let T be a positive constant. We consider the non-
stationary Navier-Stokes problem subject to the Dirichlet
boundary condition; find(u, p) : Ω × (0,T) → Rd ×R
such that

∂u
∂ t

+(u·∇)u− 2
Re

∇D(u)+∇p = f in Ω × (0,T),

∇ ·u = 0 in Ω × (0,T),
u = g onΓ × (0,T),

u =u0 in Ω , at t = 0.
(2)

We assumef = f (x, t) andg= g(x, t) only in this section
to review the scheme for such general functions.

3.1 An idea of a characteristic-curve
method

We explain an idea of a characteristic-curve method of
first order in time simply.

Let ∆t be a time increment andNT ≡ [T/∆t] be a total
step number. We settn ≡ n∆t for n ∈ N∪ {0}. For a
function φ on Ω × (0,T) or Γ × (0,T) and an integer
n (0 ≤ n ≤ NT), φn meansφn ≡ φ(·, tn). For a velocity
w : Ω → Rd, we defineX1(w,∆t) : Ω → Rd by

X1(w,∆t)(x) ≡ x−w(x)∆t.

We use the symbol◦ to designate the composition of
functions, e.g., for a functionφ defined inΩ(

φ ◦X1(w,∆t)
)
(x) ≡ φ(X1(w,∆t)(x)).

Let u : Ω × (0,T) → Rd be a smooth function andX :
(0,T) → Rd be a solution of the ordinary differential
equation, {

X′(t) = u(X, t) in (tn−1, tn),
X(tn) = x,

(3)

for a pointx∈Ω and an integern (1≤ n≤NT). Then, the
material derivative of a smooth functionφ : Ω ×(0,T)→
R at t = tn is approximated as follows;( ∂

∂ t
+u·∇

)
φ(x, t) =

d
dt

φ(X(t), t)

=
φn(X(tn))−φn−1(X(tn−1))

∆t
+O(∆t)

=
φn−φn−1◦X1(un−1,∆t)

∆t
(x)+O(∆t),

(4)

where we have used the relation,

X(tn−1) = X1(un−1,∆t)(x)+O(∆t2).

For the Navier-Stokes equations, substitutingui (i =
1, · · · ,d) into φ in (4), we get the approximation of the
material derivative ofu at t = tn,(∂u

∂ t
+(u·∇)u

)
(x, t) =

un−un−1◦X1(un−1,∆t)
∆t

(x)+O(∆t).

3.2 A finite element scheme

Let Th ≡ {K} be a triangulation ofΩ , where subscript
h means representative length of the triangulation. We
defineΩh by

Ωh ≡ int
∪

{K; K ∈ Th}

and the boundaryΓh ≡ ∂Ωh. For a vector valued function
g onΓ we set finite element spaces,

Xh ≡
{

vh ∈C0(Ω h)d; vh|K ∈ P1(K)d, ∀K ∈ Th
}
,

Mh ≡
{

qh ∈C0(Ω h); qh|K ∈ P1(K), ∀K ∈ Th
}
,

Vh(g) ≡
{

vh ∈ Xh; vh(P) = g(P), ∀P∈ Γh
}
,

Vh ≡ Vh(0), Qh ≡ Mh∩L2
0(Ωh),

(5)
whereP is any nodal point onΓh. Let Πh be the in-
terpolation operator fromC0(Ωh)d to Xh. For an ex-
ternal force f ∈ C0(Ω × [0,T])d, f n

h meansΠh f n. For
u, w∈ H1(Ωh)d we define linear formsMh(u,w,∆t) and
F n

h onVh,

⟨Mh(u,w;∆t), vh⟩ ≡
(u−w◦X1(w,∆t)

∆t
, vh

)
,

⟨F n
h , vh⟩ ≡

(
f n
h , vh

)
,

and bilinear formsah, bh and Ch on H1(Ωh)d ×
H1(Ωh)d, H1(Ωh)d×L2(Ωh) andH1(Ωh)×H1(Ωh), re-
spectively,

ah(u,v) ≡ 2
Re

(
D(u), D(v)

)
,

bh(v,q) ≡ −
(
∇ ·v, q

)
,

Ch(p,q) ≡ −δ ∑
K∈Th

h2
K

(
∇p, ∇q

)
K .

Here δ is a positive constant,hK is the diameter of el-
ementK and (·, ·)K represents theL2-inner product on
elementK.

We write the scheme for (2) in the paper[17] again;
find {(un

h, pn
h) ∈ Vh(gn)×Qh; n = 1, · · · ,NT} such that,

for n = 1, · · · ,NT ,

⟨Mh(un
h,u

n−1
h ;∆t),vh⟩+ah(un

h,vh)+bh(vh, pn
h)

+bh(un
h,qh)+Ch(pn

h,qh) = ⟨F n
h , vh⟩,

∀(vh,qh) ∈Vh×Qh,

(6)

whereu0
h is a function approximatingu0.

Using the same given functionsf andg in (1) for (2)
and solving the scheme (6), we find a numerical station-
ary solution of (2) as a solution of (1).

Remark 1. In cases of solving cavity flow problems,Ω =
Ωh, Γ = Γh, f = 0 and g= g(x).
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Remark 2. For cavity flow problems, we set u0 as the
solution of the stationary Stokes equations with the same
boundary condition u= g on Γ . Since u0 is not given
explicitly, we compute the solution(wh, rh) ∈Vh(g)×Qh

of the problem;

ãh(wh,vh)+bh(vh, rh)+bh(wh,qh)+ Ch(rh,qh) = 0,

∀(vh,qh) ∈Vh×Qh, (7)

whereãh is ah with Re= 1, and set u0h ≡ wh.

4 Numerical results

In this section we show two- and three-dimensional nu-
merical results of cavity flow problems by the scheme (6).
The scheme has numerical convergence orderO(h+ ∆t)
to exact solutions, which has been recognized for Exam-
ples 1 and 3 in the paper[17]. Therefore, if there exists
a (sufficiently smooth) unique solution of (2), we can ex-
pect the solution by the scheme to converge to the exact
one ash and∆t go to 0.

We use the CR method[14] with the point Jacobi
preconditioner[1] for solving the system of linear equa-
tions, which works for our symmetric matrix. In the
scheme we have to compute a integral,∫

K
un−1

h ◦X1(un−1
h ,∆t)vh dx

on triangular elementsK. The integrand

un−1
h ◦X1(un−1

h ,∆t)vh

is not smooth onK. It is known that rough numerical
integration causes oscillation even in the case that the
stability is theoretically proved for a scheme with exact
integration, see the papers by Tabata[22] and Tabata and
Fujima[24]. The two solutions using numerical integra-
tion formula of degree two (2D: three points, 3D: four
points) and five (2D: seven points, 3D: fifteen points)[20]
are almost same for Examples 1 and 3 in the paper[17].
Therefore, in all the following computations we use the
numerical integration formula of degree two.

LetNΩ be the division number of each side ofΩ , (u, p)
and(uh, ph) be the solutions of the problem (2) and the
scheme (6), respectively, andnt ≡ [t/∆t] be the step num-
ber fort ∈ N. Setting a norm

∥(v, q)∥H1×L2 ≡
1√
Re

∥v∥1 +∥q∥0

in the product spaceH1(Ω)d×L2(Ω), for t ∈N\{1} we
defineDiff t by

Diff t ≡
∥(unt

h , pnt
h )− (unt−1

h , pnt−1
h )∥H1×L2

∥(unt−1
h , pnt−1

h )∥H1×L2
,

which represents a difference of the solution at timest
andt −1. We setδ = 0.2 and 0.05 for 2D and 3D prob-
lems, respectively. These values are the same as the ones
in the paper[17].

4.1 Two-dimensional cavity flow problems,
Problem 1

In this subsection we show numerical results for Prob-
lem 1.

We used FreeFem++[6] for mesh generation. Consid-
ering the boundary layers, we used nonuniform meshes
refined near the boundary. Fig. 3 shows the meshes, and
we call the meshes Fine and Coarse meshes, respectively.
These two meshes are similar around the center of the do-
main. The discretization parameters for the meshes are
shown in Table 1, wherehmin is a minimum element size.
Table 2 shows values of∆t used for Problem 1. For high
Reynolds number problems an approximation of the non-
linear convection term is important. In the scheme, the
approximation depends on not onlyh but also∆t. This is
the reason why we change the values of∆t according to
the Reynolds numbers.

Table 1: Discretization parameters for meshes in Fig 3.

Mesh ♯ of nodes ♯ of elements hmin

Fine 11,470 21,914 2.76×10−3

Coarse 5,403 10,282 5.52×10−3

Table 2: Values of∆t used for Problem 1.
∆t

Re Fine mesh Coarse mesh

100 1/100 1/50
1,000 1/200 1/100
5,000 1/800 1/400

The numerical solutions converged to stationary solu-
tions in the sense of satisfying the inequality

Diff t < 10−5. (8)

The times of convergence are listed in Table 3. Since
we have definedDiff t for only t ∈ N \ {1}, the times
in the table are integers. For eachRe, Figs. 4, 6 and 8
and Figs. 5, 7 and 9 show the graphs ofuh1(0.5, ·) and
uh2(·,0.5) of the two stationary solutions on Fine and
Coarse meshes and the streamlines of stationary solu-
tions on Fine mesh, respectively. For the boundary con-
ditions (DC0) and (DC1), we plot the results by Ghia et
al.[8] in the graphs. In the cases of the boundary condi-
tions (C0) and (C1), the graphs by the two stationary so-
lutions are almost same, and the streamlines exhibit the
flow patterns well.

In the cases of the boundary conditions (DC0)
and (DC1), although there does not exist a weak solution,
the numerical solution exists. ForRe= 100 and 1,000
of (DC0) andRe= 100 of (DC1), the graphs by the two
stationary solutions are almost same and are similar to
the results by Ghia et al. ForRe= 5,000 of (DC0) and
Re= 1,000 and 5,000 of (DC1), there are differences in
the graphs by the two stationary solutions, and the solu-
tions on Fine mesh are more close to the results by Ghia
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(0, 1) (1, 1)

(0, 1) (1, 1)

Figure 3: Meshes used for Problem 1, Fine mesh(NΩ =
256), the mesh magnified around the corners(x1,x2) =
(0,1) and(1,1), Coarse mesh(NΩ = 128) and the mesh
magnified around the corners (top to bottom).

et al. than ones on Coarse mesh. The difference between
the boundary conditions is the values ofg1 at only two
corners(x1,x2) = (0,1) and(1,1). However, there are ev-
ident differences of the streamlines by the two boundary
conditions in the three Figs. 5, 7 and 9. The similar re-
sults have been reported by Cruchaga and Oñate[5]. They
have shown the comparison of graphs ofuh1(0.5, ·) and
uh2(·,0.5) for (DC0) and (DC1) withRe= 1,000, 5,000
and 10,000.

Table 3: Convergence times.

t (∈ N)
Re Fine mesh Coarse mesh

(DC0): 100 15 15
1,000 85 92
5,000 370 358

(DC1): 100 15 15
1,000 87 87
5,000 352 399

(C0): 100 16 16
1,000 92 91
5,000 372 373

(C1): 100 17 17
1,000 91 90
5,000 356 360

4.2 Three-dimensional cavity flow prob-
lems, Problem 2

In this subsection we show numerical results for Prob-
lem 2. The finite element subdivision of the domain is
constructed by dividing the domain into a union of tri-
angular prisms and further subdividing each triangular
prism into three tedrahedra. In this process, a triangu-
lar mesh of the two-dimensional domainω ≡ (0,1)2 by
FreeFem++ is used.

Considering the boundary layers, we used nonuniform
two meshes in Fig. 10. We call the meshes Fine and
Coarse meshes, respectively, whose discretization param-
eters are shown in Table 4. In three-dimensional case, for
all the Reynolds numbers we set∆t = 1/32 for Fine mesh
and∆t = 1/24 for Coarse mesh.

The numerical solutions converged to stationary so-
lutions in the sense of satisfying the inequality (8).
The times of convergence are listed in Table 5.
Figs. 11, 15 and 19 show the graphs ofuh1(0.5,0.5, ·) and
uh3(·,0.5,0.5) of the two stationary solutions on Fine and
Coarse meshes for the two boundary conditions (C0-3D)
and (C1-3D) for eachRe. The graphs of the two sta-
tionary solutions are almost same. Figs. 12–14, 16–18
and 20–22 are projections of velocity vectors on each
plane for eachRe, which exhibit the flow patterns well
of these problems.
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Figure 4: Graphs ofuh1(0.5, ·) anduh2(·,0.5), Re= 100,
(DC0), (DC1), (C0) and (C1) (top to bottom).

Figure 5: Streamlines,Re= 100, (DC0), (DC1), (C0) and
(C1) (top to bottom).
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1,000, (DC0), (DC1), (C0) and (C1) (top to bottom).

Figure 7: Streamlines,Re= 1,000, (DC0), (DC1), (C0)
and (C1) (top to bottom).
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Figure 8: Graphs ofuh1(0.5, ·) and uh2(·,0.5), Re=
5,000, (DC0), (DC1), (C0) and (C1) (top to bottom).

Figure 9: Streamlines,Re= 5,000, (DC0), (DC1), (C0)
and (C1) (top to bottom).
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Figure 10: Meshes used for Problem 2, Fine mesh(NΩ =
64), the mesh magnified around the points(x1,x2,x3) =
(0,0,1) and (1,1,1), Coarse mesh(NΩ = 48) and the
mesh magnified around the points (top to bottom).

Table 4: Discretization parameters for meshes in Fig 10.

Mesh ♯ of nodes ♯ of elements hmin

Fine 172,965 972,288 5.16×10−3

Coarse 74,627 410,688 7.09×10−3

Table 5: Convergence times.

t (∈ N)
Re Fine mesh Coarse mesh

(C0-3D): 100 12 12
400 32 32

1,000 58 58
(C1-3D): 100 11 11

400 33 33
1,000 53 53
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Figure 11: Graphs ofuh1(0.5,0.5, ·) anduh3(·,0.5,0.5),
Re= 100, (C0-3D) (top) and (C1-3D) (bottom).
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Figure 12: Projections of velocity vectors on the plane
x2 = 0.5, Re= 100, (C0-3D) (top) and (C1-3D) (bottom).
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Figure 13: Projections of velocity vectors on the plane
x1 = 0.5,Re= 100, (C0-3D) (top) and (C1-3D) (bottom).

x3=0.5

x1

x2

x3=0.5

x1

x2

Figure 14: Projections of velocity vectors on the plane
x3 = 0.5,Re= 100, (C0-3D) (top) and (C1-3D) (bottom).
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Figure 15: Graphs ofuh1(0.5,0.5, ·) anduh3(·,0.5,0.5),
Re= 400, (C0-3D) (top) and (C1-3D) (bottom).
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Figure 16: Projections of velocity vectors on the plane
x2 = 0.5, Re= 400, (C0-3D) (top) and (C1-3D) (bottom).
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Figure 17: Projections of velocity vectors on the plane
x1 = 0.5,Re= 400, (C0-3D) (top) and (C1-3D) (bottom).
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Figure 18: Projections of velocity vectors on the plane
x3 = 0.5,Re= 400, (C0-3D) (top) and (C1-3D) (bottom).
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Figure 19: Graphs ofuh1(0.5,0.5, ·) anduh3(·,0.5,0.5),
Re= 1,000, (C0-3D) (top) and (C1-3D) (bottom).
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Figure 20: Projections of velocity vectors on the plane
x2 = 0.5, Re= 1,000, (C0-3D) (top) and (C1-3D) (bot-
tom).
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Figure 21: Projections of velocity vectors on the plane
x1 = 0.5, Re= 1,000, (C0-3D) (top) and (C1-3D) (bot-
tom).
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Figure 22: Projections of velocity vectors on the plane
x3 = 0.5, Re= 1,000, (C0-3D) (top) and (C1-3D) (bot-
tom).

5 Conclusions

We have applied a newly developed characteristic-curve
finite element scheme to cavity flow problems. The
scheme uses a cheap element P1/P1 with pressure stabi-
lization method, and the matrix of resulting linear system
is symmetric and identical. Therefore, the scheme leads
to symmetric linear solvers and easy large scale com-
putations. We have solved two- and three-dimensional
cavity flow problems with the Reynolds numbers up to
5,000 (2D) and 1,000 (3D). In the two-dimensional case,
we have observed the difference of solutions by the three
types of the Dirichlet boundary condition, discontinuous,
C0 andC1 continuous ones. From the difference of the so-
lutions of the problems with boundary conditions (DC0)
and (DC1), we have seen the influence of the discontinu-
ity of g1. For problems with continuous boundary con-
ditions in 2D and 3D, the streamlines and velocity vec-
tors obtained have shown the flow patterns well. These
results imply that the scheme can be applied for the prac-
tical problem.

The computations in this paper were carried out on
IBM eServer p5 595 (power 5, 1.9GHz) with IBM XL
C/C++ Enterprise Edition V7.0 at Research Institute for
Information Technology of Kyushu University.
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