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THE INITIAL VALUE PROBLEM FOR A THIRD-ORDER DISPERSIVE FLOW
INTO COMPACT ALMOST HERMITIAN MANIFOLDS

EIJI ONODERA

ABSTRACT. We present a time-local existence theorem of solutions to the initial value problem
for a third-order dispersive evolution equation for open curves into compact almost Hermitian
manifolds. Our equations geometrically generalize a two-sphere valued physical model describ-
ing the motion of vortex filament . These equations cause the so-called loss of one-derivative
since the target manifold is not supposed to be a Kähler manifold. We overcome this difficulty
by using a gauge transformation of a multiplier on the pull-back bundle to eliminate the bad first
order terms essentially.

1. INTRODUCTION

Let (N, J, g) be a compact almost Hermitian manifold with an almost complex structureJ
and a hermitian metricg, and let∇ be the Levi-Civita connection with respect tog. X denotes
R or R/Z. Consider the initial value problem of the form

ut = a∇2
xux + Ju∇xux + b gu(ux, ux)ux in R × X, (1.1)

u(0, x) = u0(x) in X, (1.2)

wherea, b ∈ R are constants,u(t, x) is anN -valued unknown function of(t, x) ∈ R × X,
ut(t, x) = du(t,x)((∂/∂t)(t,x)), ux(t, x) = du(t,x)((∂/∂x)(t,x)), du(t,x) : T(t,x)(R × X) →
Tu(t,x)N is the differential of the mappingu at (t, x), ∇x is the covariant derivative induced
from ∇ with respect tox along the mappingu, andJu andgu mean the almost complex struc-
ture and the metric atu∈N respectively. The equation (1.1) is an equality of sections of the
pull-back bundleu−1TN . We call the solution of (1.1) a dispersive flow. In particular, when
a = b = 0, this is called a one-dimensional Schrödinger map.

Examples of dispersive flows arise in classical mechanics: the motion of vortex filament, the
Heisenberg ferromagnetic spin chain and etc. Solutions to these physical models are valued in
two-dimensional unit sphereS2 ⊂ R3. For u⃗ = (u1, u2, u3) ∈ R3 andv⃗ = (v1, v2, v3) ∈ R3, let

u⃗ · v⃗ = u1v1 + u2v2 + u3v3, |u⃗| =
√

u⃗ · u⃗,

u⃗ × v⃗ = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

In [2], Da Rios formulated the equation modeling the motion of vortex filament of the form

u⃗t = u⃗ × u⃗xx, (1.3)

whereu⃗(t, x) ∈ S2 denotes the velocity vector along the space curve describing the position of
the vortex filament inR3 at (t, x), t is the time andx is the arc-length in this physical model.
See also, e.g., [8] and [10] for physical backgrounds of (1.3). The physical model (1.3) is an
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2 E. ONODERA

example of the equation of the one-dimensional Schrödinger map. Our equation (1.1) with
b = a/2 geometrically generalizes anS2-valued physical model

u⃗t = u⃗ × u⃗xx + a

[
u⃗xxx +

3

2
{u⃗x × (u⃗ × u⃗x)}x

]
(1.4)

describing the motion of vortex filament inR3 proposed by Fukumoto and Miyazaki in [5].
Here we state the known results on the mathematical analysis of the IVP (1.1)-(1.2). There

has been many studies on the existence of solutions to (1.1)-(1.2) both onX = R andR/Z only
when(N, J, g) is a Kähler manifold. See [1], [3], [9], [11], [12], [13], [19], [21] fora = 0 and
[16], [17], [18], [22] for a ̸= 0. Time-local existence theorems were proved by some classical
energy estimates with respect to the following quantity like theL2-energy

∥V ∥2
L2(X;TN) =

∫
X

gu(x) (V (x), V (x)) dx for V ∈ Γ(u−1TN).

More precisely, if∇ is a metric connection (∇g = 0) andg is a Kähler metric (∇J = 0), then
the equation (1.1) behaves like symmetric hyperbolic systems, and the classical energy method
works well. This fact is closely related with the geometric studies of the good structure of the
equation of dispersive flow into a compact Riemann surface onR. Being inspired with Hasi-
moto’s pioneering work in [8], Chang, Shatah and Uhlenbeck constructed a good moving frame
along the map, and rigorously reduced the equation of the one-dimensional Schrödinger map
into a compact Riemann surface to a simple form of a complex-valued nonlinear Schrödinger
equation in [1]. Using the same idea, the author studied the geometric reduction of the equa-
tions of higher-order dispersive flows in [18]. In addition, time-global existence theorems were
also studied under some geometric conditions. For the one-dimensional Schrödinger maps,
time-global existence holds if(N, J, g) is locally symmetric. See [9], [19], and [21]. For the
third-order equation (1.1), Nishiyama and Tani in [16] and [22] proved time-local and time-
global existence of solutions whenX = R or X = R/Z, N = S2, and the integrability
conditionb = a/2 is satisfied. They made use of some conservation laws to prove the global
existence theorem. These conservation laws were discovered by Zakharov and Shabat in the
study of the Hirota equation. See [24] for details. In [17] the author generalized these results
whenX = R/Z. He proved a time-local existence theorem for (1.1)-(1.2) whenN is a compact
Kähler manifold, and proved a time-global existence theorem whenN is a compact Riemann
surface with a constant curvatureK, and the conditionb = Ka/2 holds.

On the other hands, almost Hermitian manifolds do not necessarily satisfy the Kähler con-
dition ∇J = 0. For example, it is well-known thatS6, the Hopf manifoldS2p+1 × S1, and
S2p+1 × S2q+1 (p, q = 1, 2, 3, . . . ) never admit the structure of K̈ahler manifolds. If the K̈ahler
condition fails to hold, then∇J causes the so-called loss of one-derivative, and the equation
(1.1) behaves like the Cauchy-Riemann equation. In this case, the classical energy method
breaks down. The main purpose of this paper is to show the time-local existence theorem of
(1.1)-(1.2) without the K̈ahler condition. To state our results, we here introduce some function
spaces for mappings.

Definition 1.1. Let N be the set of positive integers. Form ∈ N ∪ {0}, the Sobolev space of
mappings is defined by

Hm+1(R; N) = {u ∈ C(R; N) | ux ∈ Hm(R; TN)},



DISPERSIVE FLOW 3

whereux ∈ Hm(R; TN) means thatux satisfies

∥ux∥2
Hm(R;TN) =

m∑
j=0

∫
R

gu(x)(∇j
xux(x),∇j

xux(x))dx < +∞.

Moreover, letI be an interval inR, and letw be an isometric embedding of(N, J, g) into the
standard Euclidean space(Rd, g0). We say thatu ∈ C(I; Hm+1(R; N)) if u ∈ C(I×R; N) and
(w◦u)x ∈ C(I; Hm(R; Rd)), whereC(I; Hm(R; Rd)) is the set of usual Sobolev space valued
continuous functions onI.

Our main results is the following.

Theorem 1.1. Let (N, J, g) be a compact almost Hermitian manifold, and leta ̸= 0, b ∈ R.
Then for anyu0∈Hm+1(R; N) with an integerm > 4, there exists a constantT > 0 depending
only ona, b, N and∥u0x∥H4(R;TN) such that the initial value problem(1.1)-(1.2) possesses a
unique solutionu∈C([−T, T ]; Hm+1(R; N)).

Roughly speaking, Theorem 1.1 says that (1.1)-(1.2) has a time-local solution in the usual
Sobolev spaceH5(R; Rd) = (1 − ∂2

x)
−5/2L2(R; Rd).

Our idea of the proof comes from the theory of linear dispersive partial differential operators.
Consider the initial value problem for linear partial differential equations of the form

ut + uxxx + a(x)ux + b(x)u = f(t, x) in R × R, (1.5)

wherea(x), b(x) ∈ B∞(R), which is the set of all smooth functions onR whose derivative of
any order are bounded onR, u(t, x) is a complex-valued unknown function, andf(t, x) is a
given function. Tarama proved in [23] that the initial value problem for (1.5) isL2-well-posed
if and only if ∣∣∣∣∫ y

x

Im a(s)ds

∣∣∣∣ 6 C|x − y|1/2 (1.6)

for anyx, y ∈ R with some constantC > 0. The necessity is proved by the usual method of
asymptotic solutions. In order to prove the sufficiency, Tarama first constructed a nice pseudo-
differential operators of order zero which is automorphic onL2(R; C) under the condition (1.6),
and eliminates

√
−1 Im a(x)∂x. This is one of the methods of bringing out the local smoothing

effect ofe−t∂3
x onR, and this property breaks down onR/Z. See e.g., [4]. Tarama also pointed

out unofficially that ifIm a∈L2(R; R), then (1.6) holds and the proof of sufficiency becomes
quite easier than the general case of (1.6). In this case, a gauge transformation defined by

u(x) 7−→ v(x) = u(x) exp

(
1

3

∫ x

−∞
{Im a(y)}2dy

)
(1.7)

is automorphic onL2(R; C), and (1.5) becomes

vt + vxxx − {Im a(x)}2vxx + {ã(x) +
√
−1 Im a(x)}vx + b̃(x)v = f̃(t, x) (1.8)

with someã, b̃ ∈ B∞(R) andf̃ , whereã is a real-valued. The initial value problem for (1.8)
is L2-well-posed in the positive direction oft since the second-order term{Im a(x)}2∂2

x domi-
nates the seemingly bad first-order term

√
−1 Im a(x)∂x essentially. In this special case, pseu-

dodifferential calculus is not required.
We make use of the idea of the gauge transformation (1.7). Roughly speaking, we see∇m

x ux

satisfies the form(
∇t − a∇3

x −∇xJu∇x

)
∇m

x ux − m(∇xJu)∇x∇m
x ux = harmless terms, (1.9)
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where(∇xJu) is the covariant derivative of the(1, 1)-tensor fieldJu with respect tox alongu.
The termm(∇xJu)∇x∇m

x ux cannot be controlled by the classical energy method since(∇xJu)
behaves as anti-symmetric operator onL2(R; TN) in the sense∫

R
g((∇xJu)V,W )dx = −

∫
R

g(V, (∇xJu)W )dx, for V, W ∈ Γ(u−1TN).

We introduce a gauge transformation onu−1TN defined by

∇m
x ux(t, x) 7−→ ∇m

x ux(t, x) exp

(
− 1

3a

∫ x

−∞
g(ux(t, y), ux(t, y))dy

)
, (1.10)

which eliminates the bad term essentially since(∇xJu) = O
(
g(ux, ux)

1/2
)
. Parabolic regular-

ization and the energy estimates with (1.10) prove Theorem 1.1. The assumptionm > 4 is the
requirement on the integer for our method to work.

When(N, J, g) is a Kähler manifold, we do not need the regularitym > 4. In this case, the
termm(∇xJu)∇x∇m

x ux vanishes in (1.9), thus the classical energy method works. Indeed we
prove the following.

Theorem 1.2. Let (N, J, g) be a compact K̈ahler manifold and leta ̸= 0 andb ∈ R. Then for
any u0∈Hm+1(R; N) with an integerm > 2, there exists a constantT > 0 depending only
ona, b, N , and∥u0x∥H2(R;TN) such that the initial value problem(1.1)-(1.2)possesses a unique
solutionu∈C([−T, T ]; Hm+1(R; N)).

Theorem 1.3. Let (N, J, g) be a compact Riemann surface with constant Gaussian curvature
K and leta ̸= 0 andb = aK/2. Then for anyu0∈Hm+1(R; N) with an integerm > 2, there
exists a unique solutionu∈C(R; Hm+1(R; N)) to (1.1)-(1.2).

Theorem 1.2 and 1.3 are analogues of the results onX = R/Z in [17]. We remark that
Theorem 1.3 generalizes the results onX = R in [16] and [22]. The key idea of the proof is
the use of some conserved quantities generalizing what is used in [16]. Examples of Riemann
surfaces satisfying the conditions in Theorem 1.3 are not only the two-sphereS2 (K = 1) and
the flat torusT2 = R2/Z2 (K = 0), but also closed hyperbolic surfaces (K = −1).

The organization of this paper is as follows. Section 2 is devoted to geometric preliminaries.
In Section 3 we construct a sequence of approximate solutions by solving the IVP for a fourth-
order parabolic equation. In Section 4 we obtain uniform estimates of approximate solutions.
In Section 5 we complete the proof of Theorem 1.1. Finally, in Section 6 we give the sketch of
the proof of Theorem 1.2 and 1.3.

2. GEOMETRIC PRELIMINARIES

In this section, we introduce some geometric notations used later in our proof. One can refer
[15] for the elements of nonlinear geometric analysis.

We will useC = C(·, . . . , ·) to denote a positive constant depending on the certain parame-
ters, geometric properties ofN , et al. The partial differentiation is written by∂, or the subscript,
e.g.,∂xf , fx, to distinguish from the covariant derivative along the curve, e.g.,∇x.

Throughout this paper,w is fixed as an isometric embedding mapping from(N, J, g) into a
standard Euclidean space(Rd, g0). Existence ofw is ensured by the celebrated works of Nash
[14], Gromov and Rohlin [7], and related papers.

For δ > 0, let (w(N))δ be aδ-tubular neighbourhood ofw(N) ⊂ Rd defined by

(w(N))δ =
{
Q = q + X ∈ Rd | q ∈ w(N), X ∈ (Tqw(N))⊥, |X| < δ

}
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where | · | denotes the distance inRd, and letπ : (w(N))δ → w(N) be the nearest point
projection map defined byπ(Q) = q for Q = q + X ∈ (w(N))δ. Sincew(N) is compact, for
any sufficiently smallδ, π exists and is smooth. We fix such smallδ.

Let u : R → N be given.u−1TN =
∪

x∈R Tu(x)N is the pull-back bundle induced fromTN
by u. V is called a section ofu−1TN if V (x) ∈ Tu(x)N for all x ∈ R. We denote the space
of all the sections ofu−1TN by Γ(u−1TN). ForV,W ∈ Γ(u−1TN), define the quantities like
L2-inner product by∫

R
g(V,W )dx =

∫
R

gu(x)(V (x),W (x))dx, ∥V ∥2
L2(R;TN) =

∫
R

g(V, V )dx.

Then the quantity∥ux∥2
Hm(R;TN) defined in Definition 1.1 is written by

∥ux∥2
Hm(R;TN) =

m∑
j=0

∥∇j
xux∥2

L2(R;TN).

In contrast, the standardL2-product andL2-norm are written by

⟨V, W ⟩ =

∫
R

g0(V (x),W (x))dx, ∥V ∥2
L2(R;Rd) = ⟨V, V ⟩

for V,W ∈ L2(R; Rd), and the quantity∥V ∥2
Hm(R;Rd)

is written by

∥V ∥2
Hm(R;Rd) =

m∑
j=0

∥∂j
xV ∥2

L2(R;Rd).

At this time∥ux∥Hm(R;TN) < ∞ if and only if∥(w◦u)x∥Hm(R;Rd) < ∞. See, e.g., [20, Section 1]
or [11, Proposition 2.5] for this equivalence. Noting this equivalence, we see

Hm+1(R; N) = {u ∈ C(R; N) | (w◦u)x ∈ Hm(R; Rd)}.
Finally, for α > 0, m ∈ N ∪ {0} and an intervalI ⊂ R, C0,α(I; Hm(R; Rd)) denotes the usual
Hm(R; Rd)-valuedα-Hörder space onI. We will make use of fundamental Sobolev space
theory ofHm(R; Rd) later in our proof.

3. PARABOLIC REGULARIZATION

The aim of this section is to obtain a sequence{uε}ε∈(0,1) solving

ut = −ε∇3
xux + a∇2

xux + Ju∇xux + b gu(ux, ux)ux, in (0, Tε) × R, (3.1)

u(0, x) = u0(x) in R (3.2)

for eachε ∈ (0, 1), whereu = uε(t, x) is also anN -valued unknown function of(t, x) ∈
[0, Tε] × R, andu0 is the same initial data as that of (1.1)-(1.2) independent ofε ∈ (0, 1). The
argument in this section is essentially same as that in [17, Section 3]. In fact, we can show that
(3.1)-(3.2) admits a unique solution near the initial datau0. Define

L∞
δ,T =

{
u ∈ L∞((0, T ) × R; N) | ∥w◦u − w◦u0∥L∞((0,T )×R;Rd) 6 δ/2

}
for T > 0, whereδ > 0 is the fixed constant describing the radius of the tubular neighbourhood
of w(N) as stated in the previous section. We show the following.

Proposition 3.1. Let u0 ∈ Hk+1(R; N) with an integerk > 2. Then for eachε ∈ (0, 1),
there exists a constantTε = T (ε, a, b,N, ∥u0x∥Hk(R;TN)) > 0 and a unique solutionu = uε ∈
C([0, Tε]; H

k+1(R; N)) ∩ L∞
δ,Tε

to (3.1)-(3.2).
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Proof of Proposition3.1. Via the relationv = w◦u, the IVP (3.1)-(3.2) is equivalent to the
following problem

vt = −εvxxxx + F (v) in (0, Tε) × R, (3.3)

v(0, x) = w◦u0(x) in R, (3.4)

wherev = vε(t, x) is a w(N)-valued unknown function of(t, x) ∈ [0, Tε] × R, andF (v) is
written by the form

F (v) = −ε{[A(v)(vx, vx)]xx + [A(v)(vxx + A(v)(vx, vx), vx)]x

+ A(v)(vxxx + [A(v)(vx, vx)]x + A(v)(vxx + A(v)(vx, vx), vx), vx)}
+ a{vxxx + [A(v)(vx, vx)]x + A(v)(vxx + A(v)(vx, vx), vx)}
+ dww−1◦vJw−1◦vdw−1

v (vxx + A(v)(vx, vx)) + b|vx|2vx,

where,A(v)(·, ·) : Tvw(N) × Tvw(N) → (Tvw(N))⊥ is the second fundamental form of
w(N) ⊂ Rd atv ∈ w(N). Note that there existsG ∈ C∞(R4d; Rd) such that

F (v) = G(v, vx, vxx, vxxx)

for v : R → w(N), andG(v, p, q, r) satisfies

G(v, 0, 0, 0) = 0,
∂2G

∂r2
(v, p, q, r) = 0.

The equation (3.3) is a system of fourth-order parabolic evolution equations forRd-valued func-
tion. In place of the IVP (3.1)-(3.2), we will solve the IVP (3.3)-(3.4). The proof consists of
the following two steps. First, we construct a solution of (3.3)-(3.4) whose image are contained
in (w(N))δ ⊂ Rd. More precisely, we extend (3.3) to an equation for the vector-valued func-
tion valued in(w(N))δ and construct a unique time-local solution of the IVP for the extended
equation in the class

YT = {v ∈ XT | ∥v − w◦u0∥L∞((0,T )×R;Rd) 6 δ/2}

for sufficiently smallT > 0. Here

XT = {v ∈ C([0, T ] × R; Rd) | vx ∈ C([0, T ]; Hk(R; Rd))}

is the Banach space with the following norm

∥v∥XT
= ∥v∥L∞([0,T ]×R;Rd) + ∥vx∥L∞(0,T ;Hk(R;Rd)) , v ∈ XT .

Secondly, we check that this solution is actuallyw(N)-valued by using a kind of maximum
principle.

In short, it suffices to show the following two lemmas to complete our proof.

Lemma 3.2. For eachε ∈ (0, 1), there exists a constantTε > 0 depending onε, a, b,N and
∥(w◦u0)x∥Hk(R;Rd) and there exists a unique solutionv = vε ∈ YTε to

vt = −εvxxxx + F (π◦v) in (0, Tε) × R, (3.5)

v(0, x) = w◦u0(x) in R. (3.6)

Moreover, the map(w◦u0)x ∈ Hk(R; Rd) → vε
x ∈ C([0, Tε]; H

k(R; Rd)) is continuous.

Lemma 3.3. Fix ε ∈ (0, 1). Assume thatv = vε ∈ YTε solves(3.5)-(3.6). Thenv(t, x) ∈ w(N)
for all (t, x) ∈ [0, Tε] × R, thusv solves(3.3)-(3.4).
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Proof of Lemma3.2. The idea of the proof is due to the contraction mapping argument.
Let L be a nonlinear map defined by

Lv(t) = e−εt∂4
xv0 +

∫ t

0

e−ε(t−s)∂4
xF ((π◦v)(s))ds

=

∫
R

E(t, x − y)v0(y)dy +

∫ t

0

∫
R

E(t − s, x − y)F ((π◦v)(s, y))dyds,

wherev0 = w◦u0, andE(t, x) is the fundamental solution associated to∂t + ε∂4
x. Note that,

if v ∈ YT , π◦v takes value inw(N) and thusF (π◦v) makes sense. The IVP (3.5)-(3.6) is
equivalent to an integral equation of the formv = Lv.

SetM = ∥v0x∥Hk(R;Rd), and define the space

ZT = {v ∈ YT | ∥vx∥L∞(0,T ;Hk(R;Rd)) 6 2M}.

ZT is a closed subset of the Banach spaceXT . To complete the proof, we have only to show that
the mapL has a unique fixed point inZTε for sufficiently smallTε > 0, since the uniqueness in
the whole spaceYTε follows by similar and standard arguments.

First, consider the properties ofe−εt∂4
x . Sinceu0 ∈ Hk+1(R; N), v0 is especially bounded

and uniformly continuous onR. Thus, it is easy to check that

e−εt∂4
xv0 −→ v0 in C(R; Rd) as t → 0, (3.7)

and

∥e−εt∂4
xv0x∥Hk(R;Rd) 6 ∥v0x∥Hk(R;Rd). (3.8)

Moreover,e−εt∂4
x gains the regularity of order3, since(ε1/4t1/4|ξ|)je−εtξ4

is bounded forj =
0, 1, 2, 3. In fact, there existsC1 > 0 such that

∥e−εt∂4
xϕ∥Hk+1(R;Rd) 6 C1ε

−3/4t−3/4∥ϕ∥Hk−2(R;Rd) (3.9)

holds for anyϕ ∈ Hk−2(R; Rd).
Secondly, consider the nonlinear estimates ofF (π◦v). If v belongs to the classZT , we

seev(t, ·) ∈ C(R; (w(N))δ) and∥vx(t)∥Hk(R;Rd) 6 2M follows for all t ∈ [0, T ]. Thus, by
observing the form ofF (v) and the compactness ofw(N), it is easy to check that there exists
C2 = C2(a, b, M, N) > 0 such that

∥F (π◦v)(t)∥Hk−2(R;Rd) 6 C2∥vx(t)∥Hk(R;Rd), (3.10)

∥F (π◦u)(t) − F (π◦v)(t)∥Hk−2(R;Rd) 6 C2

(
∥u(t) − v(t)∥L∞(R;Rd) + ∥ux(t) − vx(t)∥Hk(R;Rd)

)
(3.11)

for anyu, v ∈ ZT .
Using the properties (3.7), (3.8), (3.9) and the nonlinear estimates (3.10), (3.11), we can

prove thatL is a contraction mapping fromZTε into itself if Tε is sufficiently small. It is the
standard argument, thus we omit the rest of the proof. �

Remark1. Suppose thatvε ∈ YTε solves (3.3)-(3.4). Then we can easily checkvε
xxxx ∈

L2(0, Tε; H
1(R; Rd)) andF (π ◦vε) ∈ L2(0, Tε; H

1(R; Rd)) from the standard arguments. Thus
we seevε

t belongs to the same classL2(0, Tε; H
1(R; Rd)), which implies thatvε − v0 belongs

to the classC0,1/2([0, Tε]; H
1(R; Rd)).
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Proof of Lemma3.3. Supposev ∈ YTε solves (3.5)-(3.6). Define the mapρ : (w(N))δ → Rd by
ρ(Q) = Q − π(Q) for Q ∈ (w(N))δ. Then we deduce

|ρ◦v(t, x)| = min
q∈w(N)

|v(t, x) − q| 6 |v(t, x) − v0(x)|.

Notice that the first equality above is due to the compactness ofw(N). In addition, as is stated
in Remark 1,v(t)−v0 belongs toL2(R; Rd) and thusρ◦v(t) makes sense inL2(R; Rd) for each
t. To obtain thatv is w(N)-valued, we will show

∥ρ◦v(t)∥2
L2(R;Rd) = ⟨ρ◦v(t), ρ◦v(t)⟩ = 0

for all t ∈ [0, Tε]. Sinceπ + ρ is identity on(w(N))δ,

dπv + dρv = Id (3.12)

holds onTv(w(N))δ, whereId is the identity. By identifyingTv(w(N))δ with Rd, we see that
vt(t, x) ∈ Tv(t,x)(w(N))δ anddπv(vt)(t, x) ∈ Tπ◦v(t,x)w(N) for each(t, x). Thus it follows that
⟨ρ◦v, dπv(vt)⟩ = 0. Using this relation and (3.12), we deduce

1

2

d

dt
∥ρ◦v∥2

L2(R;Rd) = ⟨ρ◦v, dρv(vt)⟩ = ⟨ρ◦v, dρv(vt) + dπv(vt)⟩ = ⟨ρ◦v, vt⟩ .

Recall here, by the form of the right hand side of (3.3), that−εṽxxxx + F (ṽ) ∈ Γ(ṽ−1Tw(N))
holds for anỹv : R → w(N). Thus we see(−ε(π◦v)xxxx+F (π◦v))(t) ∈ Γ((π◦v(t))−1Tw(N))
sinceπ◦v(t) ∈ w(N), and thus this is perpendicular toρ◦v(t). Noting this and substituting
(3.5), we get

1

2

d

dt
∥ρ◦v∥2

L2(R;Rd) = ⟨ρ◦v,−εvxxxx + F (π◦v)⟩

= ⟨ρ◦v,−ε(ρ◦v)xxxx − ε(π◦v)xxxx + F (π◦v)⟩
= ⟨ρ◦v,−ε(ρ◦v)xxxx⟩
= −ε∥(ρ◦v)xx∥2

L2(R;Rd) 6 0,

which implies∥ρ◦v(t)∥2
L2(R;Rd)

6 ∥ρ◦v0∥2
L2(R;Rd)

= 0. Henceρ◦v(t) ≡ 0 holds. Thusv(t) is
w(N)-valued for allt, which completes the proof. �

Setu = w−1◦v for the solutionv in Lemma 3.2. It is now obvious that thisu solves (3.1)-
(3.2). Thus we complete the proof. �

4. GEOMETRIC ENERGY ESTIMATES

Let {uε}ε∈(0,1) be a sequence of solutions to (3.1)-(3.2) constructed in Section 3 withk =
m > 4. We will obtain the uniform estimate of{uε

x}ε∈(0,1) and the existence time. Our goal of
this section is the following.

Lemma 4.1. Let u0 ∈ Hm+1(R; N) with an integerm > 4, and let {uε}ε∈(0,1) be a se-
quence of solutions to(3.1)-(3.2). Then there exists a constantT > 0 depending only on
a, b, N, ∥u0x∥H4(R;TN) such that{uε

x}ε∈(0,1) is a bounded sequence inL∞(0, T ; Hm(R; TN)).

Proof of Lemma4.1. We define

Kε(t, x) = − 1

3a

∫ x

−∞
g (uε

x(t, y), uε
x(t, y)) dy,

V ε,(m)(t, x) = eKε(t,x)∇m
x uε

x(t, x),
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N ε
m(t) =

(
∥uε

x(t)∥2
Hm−1(R;TN) + ∥V ε,(m)(t)∥2

L2(R;TN)

)1/2

.

We will obtain the differential inequality for(N ε
m(t))2. SinceN ε

4 (0) is independent ofε, we set
r0 = N ε

4 (0) and
T ∗

ε = sup {T > 0 | N ε
4 (t) 6 2r0 for all t ∈ [0, T ]} .

Lemma 3.2 showsT ∗
ε > 0. Moreover, there exists a positive constantC(a, r0) > 1 such that

C(a, r0)
−1N ε

m(t) 6 ∥uε
x(t)∥Hm(R;TN) 6 C(a, r0)N

ε
m(t) for t ∈ [0, T ∗

ε ].

This follows from the relation∣∣e±Kε(t,x)
∣∣ 6 1 + e

1
3|a|∥u

ε
x(t)∥2

L2(R;TN) 6 1 + e
1

3|a|∥u0x∥2
L2(R;TN) .

Note here that the second inequality of the estimate above is due to

∥uε
x(t)∥2

L2(R;TN) 6 ∥u0x∥2
L2(R;TN),

which follows from the energy inequality of the form

1

2
∥uε

x∥2
L2(R;TN) =

∫
R

g (∇tu
ε
x, u

ε
x) dx

=

∫
R

g (∇xu
ε
t , u

ε
x) dx

=

∫
R

g
(
−ε∇4

xu
ε
x + a∇3

xu
ε
x + ∇xJuε∇xu

ε
x + b∇x[g(uε

x, u
ε
x)u

ε
x], u

ε
x

)
dx

= −ε∥∇2
xu

ε
x∥2

L2(R;TN) 6 0.

The last equality of the estimate above is easily checked by repeatedly using integration by
parts. Especially, we see that∫

R
g (∇xJuε∇xu

ε
x, u

ε
x) dx = −

∫
R

g (Juε∇xu
ε
x,∇xu

ε
x) dx = 0,

where the second equality above is due to the fact that(N, J, g) is an almost hermitian manifold.
Having these notations and properties in mind, we show the following.

Proposition 4.2. There exists a positive constantC = C(a, b, m, N, r0) > 0 and an increasing
functionP (·) on [0, +∞) such that

1

2

d

dt
(N ε

m(t))2 +
ε

2

(
∥∇2

xV
ε,(m)(t)∥2

L2(R;TN) +
m−1∑
l=0

∥∇l+2
x uε

x(t)∥2
L2(R;TN)

)

+
1

2
∥ (g(uε

x(t), u
ε
x(t)))

1/2 ∇xV
ε,(m)(t)∥2

L2(R;TN)

6 C(a, b, m,N, r0)P (N ε
4 (t) + N ε

m−1(t)) (N ε
m(t))2

(4.1)

follows for all t ∈ [0, T ∗
ε ].

Proof of Proposition4.2. Throughout the proof of (4.1) we simply writeu, J , g, K, V (m) in
place ofuε, Juε, guε , Kε, V ε,(m) respectively, and write∥ · ∥Hk = ∥ · ∥Hk(R;TN), ∥ · ∥L2 =
∥ · ∥L2(R;TN), ∥ · ∥L∞ = ∥ · ∥L∞(R;TN) for k ∈ N, and sometimes omit to write time variablet.

The main object of the proof is the estimation of

1

2

d

dt
∥V (m)(t)∥2

L2 =

∫
R

g(∇tV
(m)(t), V (m)(t))dx. (4.2)
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Thus let us compute the equation ofV (m). OperatingeK∇m+1
x on (3.1), we have

∇tV
(m) + ε∇4

xV
(m) − a∇3

xV
(m) −∇xJ∇xV

(m) − εF1 − F2 = F3, (4.3)

where

F1 =4Kx∇3
xV

(m) + 6(Kxx − K2
x)∇2

xV
(m)

+ 4(Kxxx − 3KxKxx + K3
x)∇xV

(m)

+ (Kxxxx − 4KxKxxx − 3K2
xx + 6K2

xKxx − K4
x)V (m)

+
m−1∑
l=0

eK∇l
x

[
R(ux,∇3

xux)∇m−1−l
x ux

]
, (4.4)

F2 = − 3aKx∇2
xV

(m) − 3a(Kxx − K2
x)∇xV

(m)

− Kx∇xJV (m) − KxJ∇xV
(m) + m (∇xJ)∇xV

(m)

− aR(ux,∇xV
(m))ux + 2b g(∇xV

(m), ux)ux + b g(ux, ux)∇xV
(m), (4.5)

F3 =KtV
(m) − a

(
m−1∑
l=0

eK∇l
x

[
R(ux,∇2

xux)∇m−1−l
x ux

]
− R(ux,∇xV

(m))ux

)

−
m−1∑
l=0

eK∇l
x

[
R(ux, J∇xux)∇m−1−l

x ux

]
− a(Kxxx − 3KxKxx + K3

x)V (m)

− (Kxx − K2
x)JV (m) − mKx (∇xJ) V (m)

+
m∑

l=1

l∑
j=1

l!

j!(l − j)!
eK
(
∇j+1

x J
)
∇m+1−j

x ux

− 2bKxg(V (m), ux)ux − bKxg(ux, ux)V
(m)

+ b eK
∑

α+β+γ=m+1
α,β,γ>0

max{α,β,γ}6m

(m + 1)!

α!β!γ!
g(∇α

xux,∇β
xux)∇γ

xux. (4.6)

HereR denotes the curvature tensor on(N, J, g), and(∇xJ) is the covariant derivative of(1, 1)-
tensor fieldJ with respect tox alongu defined as

(∇xJ) V = ∇xJV − J∇xV for V ∈ Γ(u−1TN). (4.7)

(∇xJ) is, by definition, a(1, 1)-tensor field. In the same way,(∇j+1
x J) denoting the(j + 1)-

th covariant derivative ofJ is also(1, 1)-tensor field alongu. See, Appendix, for the precise
computations above.

We next obtain the estimate of (4.2) by putting (4.3) into there. To make this estimate be
clear or to focus only on the estimation of important parts as possible, we use the notation as
follows.

Definition 4.1. For A,B ∈ R, A ≡ B if and only if there exists a positive constantC =
C(a, b,m, N, r0) > 0 and an increasing functionP (·) on [0, +∞) such that

A − B 6 C(a, b, m, N, r0)P (N ε
4 (t) + N ε

m−1(t)) (N ε
m(t))2

follows for t ∈ [0, T ∗
ε ].
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First, it follows from the repeatedly using of integration by parts that∫
R

g(−ε∇4
xV

(m), V (m))dx = −ε∥∇2
xV

(m)∥2
L2 , (4.8)∫

R
g(a∇3

xV
(m), V (m))dx = −a

∫
R

g(∇2
xV

(m),∇xV
(m))dx = 0, (4.9)∫

R
g(∇xJ∇xV

(m), V (m))dx = −
∫
R

g(J∇xV
(m),∇xV

(m))dx = 0. (4.10)

Next, let us go to the estimation ofF2. The following four terms

−3a(Kxx − K2
x)∇xV

(m), −aR(ux,∇xV
(m))ux,

2b g(∇xV
(m), ux)ux, b g(ux, ux)∇xV

(m)

are easily controlled by a use of integration by parts. Indeed, we have∫
R

g(−3a(Kxx − K2
x)∇xV

(m), V (m))dx

= −3a

2

∫
R

g((Kxx − K2
x)∇xV

(m), V (m))dx

+
3a

2

∫
R

g((Kxx − K2
x)V (m),∇xV

(m))dx

+
3a

2

∫
R

g((Kxx − K2
x)xV

(m), V (m))dx

=
3a

2

∫
R

g((Kxx − K2
x)xV

(m), V (m))dx

≡ 0,

(4.11)

∫
R

g(−aR(ux,∇xV
(m))ux, V

(m))dx

= −a

2

∫
R

g(R(ux,∇xV
(m))ux, V

(m))dx

+
a

2

∫
R

g(R(ux, V
(m))ux,∇xV

(m))dx

+
a

2

∫
R

g(R(ux, V
(m))∇xux, V

(m))dx

+
a

2

∫
R

g(R(∇xux, V
(m))ux, V

(m))dx

+
a

2

∫
R

g((∇xR)(ux, V
(m))ux, V

(m))dx

= a

∫
R

g(R(ux, V
(m))∇xux, V

(m))dx

+
a

2

∫
R

g((∇xR)(ux, V
(m))ux, V

(m))dx

≡ 0,

(4.12)
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R

g(2b g(∇xV
(m), ux)ux, V

(m))dx

= −2b

∫
R

g(g(V (m),∇xux)ux, V
(m))dx

≡ 0

(4.13)

∫
R

g(b g(ux, ux)∇xV
(m), V (m))dx

= −b

∫
R

g(g(∇xux, ux)V
(m), V (m))dx

≡ 0.

(4.14)

Notice that the second equality of (4.12) follows from the fundamental property of the Rie-
mannian curvature tensorR such as

g (R(X, Y )Z,W ) = g (R(Z,W )X, Y ) for X,Y, Z,W ∈ Γ(u−1TN).

The estimates of the rest terms ofF2 are demonstrated as follows. For the estimate related to
the term−3aKx∇2

xV
(m), we have∫

R
g(−3aKx∇2

xV
(m), V (m))dx

=

∫
R

g(g(ux, ux)∇2
xV

(m), V (m))dx

= −
∫
R

g(g(ux, ux)∇xV
(m),∇xV

(m))dx − 2

∫
R

g(g(∇xux, ux)∇xV
(m), V (m))dx

= −∥ (g(ux, ux))
1/2 ∇xV

(m)∥2
L2 +

∫
R

g([g(∇xux, ux)]x V (m), V (m))dx

≡ −∥ (g(ux, ux))
1/2 ∇xV

(m)∥2
L2 .

(4.15)

As for the termm (∇xJ)∇xV
(m), note first that there exists a positive constantC1 = C1(N) >

0 such that

|(∇xJ)| (x) 6 C1(N) (g(ux(x), ux(x)))1/2 (4.16)

holds uniformly with respect tox. Thus we have∫
R

g(m (∇xJ)∇xV
(m), V (m))dx

6 m∥ (∇xJ)∇xV
(m)∥L2∥V (m)∥L2

6 mC1(N)∥ (g(ux, ux))
1/2 ∇xV

(m)∥L2∥V (m)∥L2

6 ρ∥ (g(ux, ux))
1/2 ∇xV

(m)∥2
L2 +

m2C2
1

4ρ
∥V (m)∥2

L2

≡ ρ∥ (g(ux, ux))
1/2 ∇xV

(m)∥2
L2

(4.17)

for anyρ > 0. Note that the third inequality above is due to the Schwartz inequality.
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In the same way, as for the term−Kx∇xJV (m) and−KxJ∇xV
(m), we have∫

R
g(−Kx∇xJV (m), V (m))dx +

∫
R

g(−KxJ∇xV
(m), V (m))dx

=

∫
R

g(KxxJV (m), V (m))dx + 2

∫
R

g(KxJV (m),∇xV
(m))dx

= 2

∫
R

g(KxJV (m),∇xV
(m))dx

= − 2

3a

∫
R

g((g(ux, ux))
1/2 JV (m), (g(ux, ux))

1/2 ∇xV
(m))dx

6 ρ∥ (g(ux, ux))
1/2 ∇xV

(m)∥2
L2 +

(
2

3|a|

)2
1

4ρ
∥ (g(ux, ux))

1/2 JV (m)∥2
L2

≡ ρ∥ (g(ux, ux))
1/2 ∇xV

(m)∥2
L2

(4.18)

for anyρ > 0.
By combining (4.11), (4.12), (4.13), (4.14), (4.15), (4.17) and (4.18), and by takingρ = 1/4,

we deduce ∫
R

g(F2(t), V
(m)(t))dx ≡ −1

2
∥ (g(ux(t), ux(t)))

1/2 ∇xV
(m)(t)∥2

L2 . (4.19)

Thirdly, we considerF3. There never appear the terms containing higher ordered derivative
like ∇m+l

x ux with l ∈ N in F3. Hence it is easy to obtain that∫
R

g(F3(t), V
(m)(t))dx 6 C(a, b, m, N, r0)P (N ε

4 (t) + N ε
m−1(t))N

ε
m(t)∥V (m)(t)∥L2

≡ 0.
(4.20)

Here we add some comments on the estimation. The curvature tensor is estimated as follows:
for l > 0 (resp.j > 1 ) andU, V, W ∈ Γ(u−1TN), there exists a positive constantC(N, l) > 0
(resp.C(N, j) > 0 ) such that∣∣∇l

x [R(U, V )W ]
∣∣ (x) 6 C(N, l)

∑
p+q+r+j=l

p,q,r,j>0

∣∣(∇j
xR)
∣∣ |∇p

xU | |∇q
xV | |∇r

xW | (x),

∣∣(∇j
xR)
∣∣ (x) 6 C(N, j)

j∑
α=1

∑
α+
∑α

h=1 ph=j
ph>0

|∇p1
x ux| · · · |∇pα

x ux| (x) (4.21)

uniformly with respect tox, where|·| = (g(·, ·))1/2. Similarly, the(1, 1)-tensor field(∇j+1
x J)

with j > 0 is estimated as

∣∣(∇j+1
x J)

∣∣ (x) 6 C(N, j)

j+1∑
α=1

∑
α+
∑α

h=1 ph=j+1
ph>0

|∇p1
x ux| · · · |∇pα

x ux| (x) (4.22)

for some positive constantC(N, j) > 0. Observing them, we can see that higher ordered
derivatives never appear inF3 and thus (4.20) is obtained. Note alsoKtV

(m) is contained in
F3. The requirementm > 4 comes to control this term. In other words, theL∞-norm ofKt

is bounded by some positive constantC = C(a, r0). HenceKtV
(m) is also harmless in the

estimation (4.20).
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Finally we consider the termεF1. By repeatedly using integration by parts and the Schwartz
inequality as before, it is easy to check that∫

R
g(εF1(t), V

(m)(t))dx ≡ ρε∥∇2
xV

(m)(t)∥2
L2 (4.23)

for anyρ > 0. Thus, by takingρ = 1/2, it follows from (4.8) and (4.23) that∫
R

g(−ε∇4
xV

(m)(t) + εF1(t), V
(m)(t))dx ≡ −ε

2
∥∇2

xV
(m)(t)∥2

L2 . (4.24)

Consequently, (4.9), (4.10), (4.19), (4.20), and (4.24) yield that (4.2) is estimated as follows:

1

2

d

dt
∥V (m)(t)∥2

L2 +
ε

2
∥∇2

xV
(m)(t)∥2

L2 +
1

2
∥ (g(ux(t), ux(t)))

1/2 ∇xV
(m)(t)∥2

L2

6 C(a, b, m,N, r0)P (N ε
4 (t) + N ε

m−1(t)) (N ε
m(t))2

(4.25)

for someC(a, b, m,N, r0) > 0 and increasing functionP (·).
On the other hands, it is easy to prove

1

2

d

dt
∥ux(t)∥2

Hm−1 +
ε

2

m−1∑
l=0

∥∇l+2
x ux(t)∥2

L2 ≡ 0. (4.26)

By adding (4.25) and (4.26), we obtain the desired estimate (4.1). �
Lemma 4.1 follows immediately from Proposition 4.2 in the following way. Ifm = 4, then

(4.1) implies that

(N ε
4 (t))2 6 r2

0 exp (2C(a, b, 4, N, r0)t) for t ∈ [0, T ∗
ε ].

If we sett = T ∗
ε , then this becomes

4r2
0 = (N ε

4 (T ∗
ε ))2 6 r2

0 exp (2C(a, b, 4, N, r0)T
∗
ε ) ,

which implies

T ∗
ε > T ≡ 2C(a, b, 4, N, r0)

log 4
.

ClearlyT depends only ona, b,N, ∥u0x∥H4 , being independent ofε ∈ (0, 1), and{uε
x}ε∈(0,1) is

a bounded sequence inL∞(0, T ; H4(R; TN)). Then, by using the Gronwall inequality form =
5, 6, . . . inductively, we obtain that{uε

x}ε∈(0,1) is a bounded sequence inL∞(0, T ; Hm(R; TN)).
�

Remark2. {uε
x}ε∈(0,1) gains the regularity in the following sense: By integrating (4.1) on[0, T ],

we obtain

ε

2

(
∥∇2

xV
ε,(m)∥2

L2((0,T )×R;TN) +
m−1∑
l=0

∥∇l+2
x uε

x∥2
L2((0,T )×R;TN)

)
6 C

for some constantC = C(a, b, N, ∥u0x∥Hm , T ) > 0 independent ofε ∈ (0, 1). This implies that
the sequence{ε1/2∇m

x uε
x}ε∈(0,1) is bounded inL2(0, T ; H2(R; TN)). From this and Lemma 4.1

it is obvious that{uε
t}ε∈(0,1) is also a bounded sequence inL2(0, T ; Hm−2(R; TN)). We will

use this property in the compactness argument in the next section.
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5. PROOF OFTHEOREM 1.1

Proof of Theorem1.1. We are now in a position to complete the proof of Theorem 1.1. We have
only to solve (1.1)-(1.2) in the positive direction of the time variable.

Proof of existence.Suppose thatu0 ∈ Hm+1(R; N) with the integerm > 4 is given. By apply-
ing Proposition 3.1 ask = m, we construct a sequence{uε}ε∈(0,1) solving (3.1)-(3.2) for each
ε > 0. Recall that Lemma 4.1 implies that there existsT = T (a, b, N, ∥u0x∥H4(R;TN)) > 0
which is independent ofε ∈ (0, 1) such that{uε

x}ε∈(0,1) is bounded inL∞(0, T ; Hm(R; TN)).
Recall also, as stated in Remark 2 in the previous section,{uε

t}ε∈(0,1) is bounded in the class
L2(0, T ; Hm−2(R; TN)). Having them in mind, definevε = w◦uε. Then the boundnesses
above imply respectively that{vε

x}ε∈(0,1) is bounded inL∞(0, T ; Hm(R; Rd)) and{vε
t}ε∈(0,1)

is bounded inL2(0, T ; Hm−2(R; Rd)). Especially, this boundness of{vε
t}ε∈(0,1) yields that

{vε
x}ε∈(0,1) is bounded in the classC0,1/2([0, T ]; Hm−3(R; Rd)). Then the standard compact-

ness arguments imply that there exists a subsequence{vj}j∈N andv such that

vj
x

w⋆

−→ vx in L∞(0, T ; Hm(R; Rd)) as j → ∞, (5.1)

vj
x −→ vx in C([0, T ]; Hm−1

loc (R; Rd)) as j → ∞, (5.2)

vj −→ v in C([0, T ] × B(0, R); Rd)) as j → ∞ (5.3)

for any R > 0, whereB(0, R) = {x ∈ R | |x| 6 R}. In particular, (5.3) implies thatv ∈
C([0, T ] × R; w(N)) andw−1◦v satisfies the initial condition (1.2). Furthermore, it is easy to
check thatv satisfies (3.3) withε = 0. At this time, notice thatvx ∈ L∞(0, T ; Hm(R; Rd)) ∩
C([0, T ]; Hm−1(R; Rd)) follows. As a consequence, we haveu = w−1◦v ∈ C([0, T ] × R; N)
with

ux ∈ L∞(0, T ; Hm(R; TN)) ∩ C([0, T ]; Hm−1(R; TN)) (5.4)
which solves (1.1) with the initial datau0. Thus we complete the proof of the existence of
time-local solutions. �

Remark3. For the solutionu = w−1◦v, sincevx ∈ L∞(0, T ; Hm(R; Rd)), vt belongs to
L∞(0, T ; Hm−2(R; Rd)), and thus we see thatv − w◦u0 belongs toC0,1([0, T ]; Hm−2(R; Rd)).

Proof of uniqueness.Let u, v ∈ C([0, T ] × R; N) be solutions of (1.1)-(1.2) with (5.4), and let
u(0, x) = v(0, x). Identify u, v with w◦u,w◦v. Thenu andv satisfy

vt − avxxx = f(v, vx, vxx),

where

f(v, vx, vxx) =a {[A(v)(vx, vx)]x + A(v)(vxx + A(v)(vx, vx), vx)}
+ dww−1◦vJw−1◦vdw−1

v (vxx + A(v)(vx, vx)) + b |vx|2 vx

for v : R → N . As is stated in Remark 3, bothu − w◦u0 andv − w◦u0 belong to the class
C0,1([0, T ]; Hm−2(R; Rd)) and thusz = u − v is well-defined as aRd-valued function. Taking
the difference between two equations, we have

zt − azxxx = f(u, ux, uxx) − f(v, vx, vxx),

To prove thatz = 0, we can show that there exists a constantC > 0 depending only on
a, b, N , ∥ux∥L∞(0,T ;H2(R;Rd)), and∥vx∥L∞(0,T ;H2(R;Rd)) such that

d

dt
∥z(t)∥2

H1(R;Rd) 6 C∥z(t)∥2
H1(R;Rd). (5.5)
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This estimate can be obtained by completely same calculation as that in the proof of the unique-
ness in [17]. Note, though the only case that(N, J, g) is a Kähler manifold is discussed in [17],
the argument proving the uniqueness works also when(N, J, g) is a compact almost Hermitian
manifold. Thus we omit the proof of (5.5). �

Proof of the continuity in time of∇m
x ux in L2(R; TN). We have already proved the exis-

tence of a unique solutionu ∈ C([0, T ] × R; N) with (5.4). Thus the proof of∇m
x ux ∈

C([0, T ]; L2(R; TN) is left. Let v = w◦u. To obtain this continuity, it suffices to show that
dwu(V

(m)) belongs toC([0, T ]; L2(R; Rd)).
First of all, the energy estimate (4.1) implies(d/dt) (N ε

m(t))2 6 C for someC > 0 which is
independent ofε ∈ (0, 1). Hence we deduce

∥V ε,(m)(t)∥2
L2(R;TN) + ∥uε

x(t)∥2
Hm−1(R;TN)

6 ∥V ε,(m)(0)∥2
L2(R;TN) + ∥uε

x(0)∥2
Hm−1(R;TN) + Ct.

Lettingε ↓ 0, we see thatV (m)(t) = (eK∇m
x ux)(t) ∈ L2(R; Rd) makes sense for allt ∈ [0, T ],

and

∥V (m)(t)∥2
L2(R;TN) + ∥ux(t)∥2

Hm−1(R;TN)

6 ∥V (m)(0)∥2
L2(R;TN) + ∥ux(0)∥2

Hm−1(R;TN) + Ct.

Noting thatux ∈ C([0, T ]; Hm−1(R; TN)), we have

lim sup
t→0

∥V (m)(t)∥2
L2(R;TN) 6 ∥V (m)(0)∥2

L2(R;TN). (5.6)

Sincew is the isometric embedding, (5.6) is equivalent to

lim sup
t→0

∥dwu(V
(m))(t)∥2

L2(R;Rd) 6 ∥dwu(V
(m))(0)∥2

L2(R;Rd). (5.7)

Moreover, sincevx ∈ L∞(0, T ; Hm(R; Rd)) ∩ C([0, T ]; Hm−1(R; Rd)), we seedwu(V
(m))(t)

is weakly continuous inL2(R; Rd). Hence it follows that

∥dwu(V
(m))(0)∥2

L2(R;Rd) 6 lim inf
t→0

∥dwu(V
(m))(t)∥2

L2(R;Rd). (5.8)

From (5.7) and (5.8), we obtain

lim
t→0

∥dwu(V
(m))(t)∥2

L2(R;Rd) = ∥dwu(V
(m))(0)∥2

L2(R;Rd). (5.9)

Consequently, (5.9) and the weak continuity ofdwu(V
(m))(t) in the classL2(R; Rd) imply that

dwu(V
(m))(t) is strongly continuous inL2(R; Rd) at t = 0. By the uniqueness ofu, we see

dwu(V
(m))(t) is strongly continuous at eacht ∈ [0, T ] in the same way. Thus we complete the

proof. �
�

6. SKETCH OF THE PROOF OFTHEOREM 1.2 AND 1.3

This section is devoted to the outline of the proof of Theorem 1.2 and 1.3. Recall in both
cases,N is supposed to be a compact Kähler manifold.

Proof of Theorem1.2. SinceN is a compact K̈ahler manifold, the procedures of the proof
is almost parallel to that in [17]. There is a difference to the proof of Theorem 1.1 in the
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energy estimate. Due to the Kähler condition, the classical energy method works effectively.
In other words, we do not need to use the gauge transformation of∇m

x ux used in the proof of
Theorem 1.1. This is the reason that this theorem holds form > 2. Indeed, we can obtain the
following.

Lemma 6.1. Let {uε}ε∈(0,1) be a sequence of solution of(3.1)-(3.2) constructed in Proposi-
tion 3.1 as k = m > 2. Then there exists a constantT > 0 depending only ona, b, N , and
∥u0x∥H2(R;TN) such that{uε

x}ε∈(0,1) is bounded inL∞(0, T ; Hm(R; TN)).

Proof of Lemma6.1. By the completely same calculus as that in [17, Lemma 4.1], we can show
that

d

dt
∥uε

x(t)∥2
H2(R;TN) 6 C(a, b,N)

8∑
r=4

∥uε
x(t)∥r

H2(R;TN), (6.1)

d

dt
∥uε

x(t)∥2
Hk(R;TN) 6 C(a, b, N, ∥uε

x(t)∥Hk−1(R;TN))∥uε
x(t)∥2

Hk(R;TN) (6.2)

for 3 6 k 6 m hold for all t ∈ [0, Tε]. From (6.1) and (6.2), the desired boundness is immedi-
ately obtained. See [17, Lemma 4.1] for details. �

The other parts of the proof of Theorem 1.2 are same as that was discussed in Theorem 1.1.
Thus we omit the detail. �

Next, let(N, J, g) be a compact Riemann surface with constant Gaussian curvatureK, and
assume thata ̸= 0 and b = aK/2. Theorem 1.2 tells us that, given a initial datau0 ∈
Hm+1(R; N), there existsT = T (a, b, N, ∥u0x∥H2(R;TN)) > 0 such that the IVP (1.1)-(1.2)
admits a unique time-local solutionu ∈ C([0, T ); Hm+1(R; N)).

In what follows we will extend the existence time ofu over [0,∞). For this, we have the
following energy conversation laws.

Lemma 6.2. For u ∈ C([0, T ); Hm+1(R; N)) solving(1.1)-(1.2), the following quantities

∥ux(t)∥2
L2(R;TN),

E(u(t)) = ∥∇2
xux(t)∥2

L2(R;TN) +
K2

8

∫
R

(g(ux(t), ux(t)))
3 dx

− K

∫
R

(g(ux(t),∇xux(t)))
2 dx

− 3K

2

∫
R

g(ux(t), ux(t))g(∇xux(t),∇xux(t))dx

are preserved with respect tot ∈ [0, T ).

Proof of Lemma6.2. The proof is also same as that was discussed in [17, Lemma 6.1]. Thus we
omit the detail. �

Proof of Theorem1.3. Let u ∈ C([0, T ); Hm+1(R; N)) be a time-local solution of (1.1)-(1.2)
which exists on the maximal time interval[0, T ). If T = ∞, Theorem 1.3 holds true. Thus we
only need to consider the caseT < ∞. From Lemma 6.2, we know that

∥ux(t)∥2
L2(R;TN) = ∥u0x∥2

L2(R;TN), E(u(t)) = E(u0). (6.3)

Hence it follows that

∥∇2
xux(t)∥2

L2(R;TN) =E(u0) −
K2

8

∫
R

(g(ux(t), ux(t)))
3 dx
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+ K

∫
R

(g(ux(t),∇xux(t)))
2 dx

+
3K

2

∫
R

g(ux(t), ux(t))g(∇xux(t),∇xux(t))dx

6E(u0) + C|K|∥ux(t)∥2
L∞(R;TN)∥∇xux(t)∥2

L2(R;TN).

The second term of the right hand side of the above is estimated as follows. At first, we have

∥∇xux(t)∥2
L2(R;TN) = −

∫
R

g
(
ux(t),∇2

xux(t)
)
dx

6 ∥ux(t)∥L2(R;TN)∥∇2
xux(t)∥L2(R;TN)

= ∥u0x∥L2(R;TN)∥∇2
xux(t)∥L2(R;TN). (6.4)

Next, note thatdwu(∇xux) = vxx + A(v)(vx, vx) holds forv = w◦u by the definition of the
covariant derivative along the mappingu. By noting this and by using (6.4) and Sobolev’s
inequality, we obtain

∥ux(t)∥2
L∞(R;TN)

= ∥vx(t)∥2
L∞(R;Rd)

6 C∥vx(t)∥L2(R;Rd)∥vxx(t)∥L2(R;Rd)

6 C∥vx(t)∥L2(R;Rd)

×
(
∥vxx(t) + A(v)(vx, vx)(t)∥L2(R;Rd) + ∥A(v)(vx, vx)(t)∥L2(R;Rd)

)
6 C∥vx(t)∥L2(R;Rd)

×
(
∥vxx(t) + A(v)(vx, vx)(t)∥L2(R;Rd)

+ C(N)∥vx(t)∥L∞(R;Rd)∥vx(t)∥L2(R;Rd)

)
= C∥ux(t)∥L2(R;TN)

×
(
∥∇xux(t)∥L2(R;TN) + C(N)∥ux(t)∥L∞(R;TN)∥ux(t)∥L2(R;TN)

)
6 C∥u0x∥L2(R;TN)

×
(
∥u0x∥1/2

L2(R;TN)∥∇
2
xux(t)∥1/2

L2(R;TN)

+ C(N)∥ux(t)∥L∞(R;TN)∥u0x∥L2(R;TN)

)
= C∥u0x∥3/2

L2(R;TN)∥∇
2
xux(t)∥1/2

L2(R;TN)

+ C(N)∥ux(t)∥L∞(R;TN)∥u0x∥2
L2(R;TN),

which implies

∥ux(t)∥L∞(R;TN) 6 C(N, ∥u0x∥L2(R;TN))
(
1 + ∥∇2

xux(t)∥1/4

L2(R;TN)

)
. (6.5)

From (6.3), (6.4) and (6.5), we deduce

∥∇2
xux(t)∥2

L2(R;TN)



DISPERSIVE FLOW 19

6 E(u0) + C(K, N, ∥u0x∥L2(R;TN))

×
(
1 + ∥∇2

xux(t)∥1/2

L2(R;TN)

)
∥∇2

xux(t)∥L2(R;TN).

ThusX = X(t) = 1 + ∥∇2
xux(t)∥2

L2(R;TN) satisfies

X 6 1 + E(u0) + C(K,N, ∥u0x∥L2(R;TN))X
3/4,

which implies thatX(t) is bounded, and thus

sup
t∈[0,T )

∥∇2
xux(t)∥L2(R;TN) 6 C(K, N, ∥u0x∥H2(R;TN)) (6.6)

for someC = C(K,N, ∥u0x∥H2(R;TN)) > 0. Interpolating (6.3) and (6.6) we have

sup
t∈[0,T )

∥ux(t)∥H2(R;TN) 6 C(K, N, ∥u0x∥H2(R;TN)).

Once we obtain theH2(R; TN)-boundness ofux, the desiredHm(R; TN)-boundness ofux

follows from the use of (6.2) inductively with respect tok = 3, . . . , m. Thus the existence time
of u can be extended beyondT . �

7. APPENDIX

In this section, we check (4.3) used in Section 4. OperatingeK∇m+1
x on the equation (3.1),

we have

eK∇m+1
x ut = −ε eK∇m+4

x ux + a eK∇m+3
x ux + eK∇m+1

x J∇xux

+ b eK∇m+1
x g(ux, ux)ux. (7.1)

First, to compute each term of (7.1), we use the following relation

eK∇m+k
x ux = ∇x

(
eK∇m+k−1

x ux

)
− Kxe

K∇m+k−1
x ux for k ∈ N. (7.2)

By using this relation repeatedly, we deduce

eK∇m+1
x ux =∇xV

(m) − KxV
(m), (7.3)

eK∇m+2
x ux =∇2

xV
(m) − 2Kx∇xV

(m) −
(
Kxx − K2

x

)
V (m), (7.4)

eK∇m+3
x ux =∇3

xV
(m) − 3Kx∇2

xV
(m) − 3

(
Kxx − K2

x

)
∇xV

(m)

−
(
Kxxx − 3KxKxx + K3

x

)
V (m), (7.5)

eK∇m+4
x ux =∇4

xV
(m) − 4Kx∇3

xV
(m) − 6

(
Kxx − K2

x

)
∇2

xV
(m)

− 4
(
Kxxx − 3KxKxx + K3

x

)
∇xV

(m)

−
(
Kxxxx − 4KxKxxx − 3K2

xx + 6K2
xKxx − K4

x

)
V (m). (7.6)

Moreover, (7.3) and the Leibniz rule yield that

eK∇m+1
x [g(ux, ux)ux] (7.7)

= 2eKg(∇m+1
x ux, ux)ux + eKg(ux, ux)∇m+1

x ux (7.8)

+
∑

α+β+γ=m+1
α,β,γ>0

max{α,β,γ}6m

(m + 1)!

α!β!γ!
eKg(∇α

xux,∇β
xux)∇γ

xux (7.9)

= 2g(∇xV
(m), ux)ux + g(ux, ux)∇xV

(m) (7.10)
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− 2g(KxV
(m), ux)ux − g(ux, ux)KxV

(m) (7.11)

+
∑

α+β+γ=m+1
α,β,γ>0

max{α,β,γ}6m

(m + 1)!

α!β!γ!
eKg(∇α

xux,∇β
xux)∇γ

xux. (7.12)

Next, we computeeK∇m+1
x ut. Note that

∇tux = ∇xut and ∇x∇tux = ∇t∇xux + R(ux, ut)ux

follow from the definition of the Levi-Civita connection. Using these commutative relations
inductively, we have

∇m+1
x ut = ∇t∇m

x ux +
m−1∑
l=0

∇l
x

[
R(ux, ut)∇m−(l+1)

x ux

]
. (7.13)

By multiplying eK with (7.13), we have

eK∇m+1
x ut = eK∇t∇m

x ux +
m−1∑
l=0

eK∇l
x

[
R(ux, ut)∇m−(l+1)

x ux

]
. (7.14)

By notingeK∇t∇m
x ux = ∇t

(
eK∇m

x ux

)
− Kt∇m

x ux = ∇tV
(m) − KtV

(m), and by substituting
(3.1) into the second term of (7.14), we deduce

eK∇m+1
x ut = ∇tV

(m) − KtV
(m) − ε

m−1∑
l=0

eK∇l
x

[
R(ux,∇3

xux)∇m−(l+1)
x ux

]
(7.15)

+ a

m−1∑
l=0

eK∇l
x

[
R(ux,∇2

xux)∇m−(l+1)
x ux

]
(7.16)

+
m−1∑
l=0

eK∇l
x

[
R(ux, J∇xux)∇m−(l+1)

x ux

]
. (7.17)

(Note thatR(ux, b g(ux, ux)ux)∇m−(l+1)
x ux = 0 sinceR(ux, ux) = 0.) The fourth term of the

right hand side of (7.17) is decompose as

a
m−1∑
l=0

eK∇l
x

[
R(ux,∇2

xux)∇m−(l+1)
x ux

]
(7.18)

=a

(
m−1∑
l=0

eK∇l
x

[
R(ux,∇2

xux)∇m−1−l
x ux

]
− R(ux,∇xV

(m))ux

)
(7.19)

+ aR(ux,∇xV
(m))ux. (7.20)

Note the term∇m+1
x ux never appear in the first term of the right hand side of (7.20).

Let us move to the computation ofeK∇m+1
x J∇xux. First, it follows from the definition that

(∇xJ) V = ∇xJV − J∇xV for V ∈ Γ(u−1TN), (7.21)

where(∇xJ) is the covariant derivative of(1, 1)-tensorJ with respect tox alongu and is also
(1, 1)-tensor field alongu. We will write (∇xJ) V not to be confused with∇xJV . In the same
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way,(∇j+1
x J) with j > 1, which is the(j + 1)-th covariant derivative of(1, 1)-tensor fieldJ , is

also(1, 1)-tensor field alongu defined inductively by the form(
∇j+1

x J
)
V = ∇x

(
∇j

xJ
)
V −

(
∇j

xJ
)
∇xV for V ∈ Γ(u−1TN),

where(∇1
xJ) = (∇xJ). Using (7.21) repeatedly, we deduce

eK∇m+1
x J∇xux = eK∇xJ∇m+1

x ux + eK

m∑
l=1

∇l
x (∇xJ)∇m+1−l

x ux (7.22)

For the first term of the right hand side of (7.22), (7.3) andeKJ = JeK yield

eK∇xJ∇m+1
x ux (7.23)

=∇x

(
JeK∇m+1

x ux

)
− KxJeK∇m+1

x ux (7.24)

=∇xJ∇xV
(m) − Kx∇xJV (m) − KxJ∇xV

(m) − (Kxx − K2
x)JV (m). (7.25)

For the second term of the right hand side of (7.22), by regarding(∇xJ) and∇m+1−l
x ux as a

(1, 1)-tensor field and a(1, 0)-tensor field respectively, we deduce

eK

m∑
l=1

∇l
x (∇xJ)∇m+1−l

x ux (7.26)

= eK

m∑
l=1

∇l
xC

2
1

(
(∇xJ) ⊗∇m+1−l

x ux

)
(7.27)

= eK

m∑
l=1

C2
1∇l

x

(
(∇xJ) ⊗∇m+1−l

x ux

)
(7.28)

= eK

m∑
l=1

C2
1

{
l∑

j=0

l!

j!(l − j)!

(
∇j+1

x J
)
⊗∇m+1−l+(l−j)

x ux

}
(7.29)

= eK

m∑
l=1

l∑
j=0

l!

j!(l − j)!

(
∇j+1

x J
)
∇m+1−j

x ux (7.30)

= meK (∇xJ)∇m+1
x ux + eK

m∑
l=1

l∑
j=1

l!

j!(l − j)!

(
∇j+1

x J
)
∇m+1−j

x ux, (7.31)

whereC2
1 : TuN ⊗ TuN ⊗ T ∗

uN → TuN is a contraction which mapsxi ⊗ xj ⊗ y∗
k into∑

j,k y∗
k(xj)xi. Notice that the second equality of (7.31) holds since the covariant derivative

commutes with the contraction, and the third equality of (7.31) is due to the fact that

∇x (S ⊗ T ) = (∇xS) ⊗ T + S ⊗ (∇xT )

holds for any tensorS andT . See, e.g., [6] for these properties. Moreover, by noting that
f (∇xJ) = (∇xJ) f holds for any scalar functionf and by using (7.3), we deduce

meK (∇xJ)∇m+1
x ux = m (∇xJ) eK∇m+1

x ux (7.32)

= m (∇xJ)∇xV
(m) − mKx (∇xJ) V (m). (7.33)

Combining (7.22),(7.25), (7.31), and (7.33), we obtain

eK∇m+1
x J∇xux (7.34)

=∇xJ∇xV
(m) − Kx∇xJV (m) − KxJ∇xV

(m) − (Kxx − K2
x)JV (m) (7.35)
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+ m (∇xJ)∇xV
(m) − mKx (∇xJ) V (m) (7.36)

+ eK

m∑
l=1

l∑
j=1

l!

j!(l − j)!

(
∇j+1

x J
)
∇m+1−j

x ux. (7.37)

Consequently, by substituting (7.5),(7.6), (7.12),(7.17), (7.20) and (7.37) into (7.1), we deduce
the desired equality (4.3).
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