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Abstract— Traditional worst-case design is becoming much 

difficult. The increase in parameter variations requires large 

design margins. However since the worst-case situations do not 

always occur, the design margin is often overestimated. To 

eliminate the excessive design margin, designers should focus on 

typical case rather than worst case. We are investigating canary 

logic that is one of the typical-case designs. The canary logic can 

eliminate the excessive design margin by combined with Dynamic 

Voltage Scaling (DVS) system. A naive combination of the canary 

and the DVS suffers serious performance loss due to useless 

voltage scaling. In this paper, we show where the performance 

loss comes from and improve the canary logic to eliminate the 

excessive design margin without performance loss. 

I. INTRODUCTION 

The deep submicron semiconductor technologies increase 
parameter variations and thus the processer design becomes 
more difficult [1,5,8,9]. Generally, processor’s maximum clock 
frequency is determined by considering the worst-case critical 
path delay and a safety margin. The margin is required since 
delays are not constant due to parameter variations. The 
parameter variations include process, voltage, and temperature 
(PVT) variations. In the worst-case design, the critical path 
delay and the margins are summed up and thus PVT variations 
have a serious impact on supply voltage to satisfy required 
operating frequency and to improve timing yield of 
microprocessors. In other words, managing parameter 
variations is a key to power reduction. 

In the worst-case design, the parameters rarely become the 
worst case. Considering the situations, we are investigating 
typical-case design methodologies, which consider typical 
cases rather than worst cases. In the typical-case design, the 
margin is estimated by the typical case of parameters and thus 
the constraints in processer design are relaxed. If the worst case 
occurred, the processor would cause timing errors. Thus, we 
have to assure the correct processor state by avoiding or by 
recovering from timing errors.  

Razor [2] is one of the typical-case designs, which permits 
to violate timing constraints to improve energy efficiency.  
Razor works at higher clock frequency than that determined 
by the critical path delay. In order to detect timing errors, 
Razor flip-flop (FF) is proposed. Each timing-critical FF 
(main FF) has its shadow FF, which is expected to always hold 
correct values.  If the values latched in the main and shadow 

FFs do not match, a timing error is detected. When the timing 
error is detected in microprocessor pipelines, the processor 
state is recovered to a safe point. 

However, Razor can be further improved. We are 
investigating canary logic [7], which does not detect but predict 
timing errors by using canary FFs. Thus, the canary logic does 
not need any recovery processes. We will find later in the 
present paper that adopting the canary logic and the DVS on a 
carry select adder (CSLA) shows the potential in energy 
reduction of 31%. Unfortunately, the current canary logic 
causes severe performance loss. In this paper, we analyze 
where the performance loss comes from and solve the 
performance loss problem. 

This paper is organized as follows. Section II introduces the 
canary logic. Section III explains the evaluation environment. 
Section IV describes a problem in the canary logic. Section V 
proposes dual-sensing canary to solve the problem. Section VI 
presents experimental results. Finally, Section VII concludes 
this paper. 

II. CANARY LOGIC 

The increase in parameter variations requires large design 
margins. In order to eliminate the excessive design margin, 
designers should focus on typical case rather than worst case. 
As a typical-case design, we are investigating canary FF [7]. 

 

Figure 1.  Canary Flip-Flop 

The canary FF is augmented with a delay element and a 
shadow FF, as shown in Figure 1. The canary FF is used to 
detect a timing error. Every timing error is predicted by 
comparing the main FF value with that of the shadow FF, 
which runs into the timing error a little bit before the main FF.  



Figure 2 explains how the DVS technique utilizes the 
canary FFs. The horizontal and vertical lines present time and 
supply voltage, respectively. At regular intervals, the supply 
voltage is decreased if a timing error is not predicted during 
the last interval. When a timing error is predicted to occur, the 
supply voltage is increased. 

 

Figure 2.  Canary’s DVS 

III. EVALUATION ENVIRONMENT 

As a case study of the canary logic, we apply the canary 
logic to a CSLA. In order to evaluate the DVS system using 
canary logic, accurate circuit delay has to be considered. On 
system designs, architectural-level simulators are a must-be 
tool, which makes designers examine a wide variety of design 
choices. Unfortunately, current architectural-level simulators 
do not consider circuit delay and are inappropriate to evaluate 
the DVS system using canary logic. In contrast, gate-level 
simulation can estimate accurate circuit delay. However, the 
gate-level simulations require huge amount of simulation time. 
Therefore, we built a co-simulation environment, which 
combine gate- and architectural-level simulators.  

 
Figure 3.  Co-simulation Framework 

Figure 3 shows the framework of our co-simulator. The 
left block is an architectural-level simulator, where the 
behavior of the entire processer is simulated. The right block 
is a gate-level simulation environment, where the CSLA with 
the canary logic is simulated. The co-simulator behaves as 
follow. 

1. When an ADD or a SUB instruction is executed in the 
architectural-level simulator, the gate-level simulator 
is triggered with its operands. 

2. The CSLAs in the gate-level simulation execute the 
operation with the operands and the canary FFs 
examines timing errors.  

3. Gate-level simulation results are delivered to the 
architectural-level simulator.  

4. The supply voltage changes according to the gate-
level simulation results. 

The co-simulation is executed by repeating these steps 
from 1 to 4. In this way, when the delay information is 
necessary, the architectural-level simulator asks the gate-level 
simulator whether any timing errors are predicted or not.  

TABLE I.  PROCESSOR CONFIGURATIONS 

 

TABLE II.  FREQUENCY – VOLTAGE SPECIFICATIONS 

 

The MASE simulator [6], is used for architectural-level 
simulation. TABLE I summarizes processor configurations. 
Seven integer programs from SPEC2000 CINT benchmark are 
used. For each program, 1 billion instructions are skipped 
before an actual simulation begins. After that each program is 
executed for 1 billion instructions.  

In the gate-level simulation, we design a 32bit CSLA. 
SYNOPSYS DesignCompiler logic-synthesizes the CSLA 
with Hitachi 0.18μm standard cell libraries. The combinations 
of the clock frequency and the supply voltage of Intel Pentium 
M [3], which is shown in TABLE II, are used. We project the 
highest clock frequency, which is determined by CSLA’s 
critical path delay reported by DesignCompiler and safety 
margin for PVT variations, onto Pentium’s highest clock 
frequency. The safety margins of 50% and 100% of the 
CSLA’s critical path delay are assumed. In other words, we 
assume that clock cycle time is 1.5 time and 2 time of the 
CSLA’s critical path delay. The original canary’s delay is 10% 
of the critical path delay. CanaryS and canaryL have 5% and 
15% of the critical path delay as their delay, respectively. We 
use the interval of 100K clock cycles. It is assumed every 
supply voltage switching requires 10μs [4]. 



 

IV. PROBLEM IN CANARY LOGIC 

In this section, we show the potential in energy reduction 
and a problem in the canary logic.  

 

Figure 4.  Energy Consumptions 

Figure 4 shows energy consumptions. Each bar represents 
energy consumption relative to that of the baseline model. 
margin50% and margin100% mean the safety margin of 50% 
and 100% is provided. It is relative to the critical path delay. 
In other words, we assume that clock cycle time is 1.5 time 
and 2 time of critical path delay. In margin50%, energy can be 
reduced by 23% on average. In margin100%, energy can be 
reduced by 31% on average.  

 
Figure 5.  Execution Cycles 

 
Figure 6.  Energy Delay Product 

In contrast, execution cycles are increased by about 40% 
for all programs, as shown in Figure 5. Each graph is 
normalized by the baseline execution cycles. Consequently, 
energy efficiency is diminished. Figure 6 shows Energy Delay 

Product (EDP). Each bar is normalized by the baseline EDP. 
In margin50%, EDP is increased by about 8% for all programs. 
The cause is performance overhead due to voltage scaling. 
Every change in the voltage requires 10μs. The voltage scaling 
strategy in the present paper shows an oscillation in supply 
voltage. Since every supply voltage switching makes 
processor unavailable during the transition, this oscillation has 
a serious impact on performance and hence on power 
efficiency. In order to avoid the supply voltage oscillation, the 
canary’s DVS policy should be improved. 

V. DUAL-SENSING CANARY 

In order to avoid the performance loss due to the supply 
voltage oscillation, we improve the canary logic. We call the 
improved one dual-sensing canary. We change the voltage 
scaling strategy. 

 
Figure 7.  Dual-Sensing Canary 

Figure 7 shows the dual-sensing canary. It has two shadow 
FFs, which are different in delay values. One has a smaller 
delay and is called canaryS. The other has a larger delay and is 
called canaryL. Hence, canaryL meets a timing error before 
canaryS does. In addition, we change the voltage scaling 
policy, as shown in TABLE III. If canaryL predicts an error 
and canaryS does not predict it, the supply voltage is 
unchanged in the next interval. If both canaryL and canaryS 
predict errors, it implies that there is small margin in the main 
FF. Thus, in order to avoid the error in main FF, the supply 
voltage is increased. When any errors are not predicted during 
the current interval in both canary FFs, there is sufficient 
timing margin and hence the voltage is decreased. 

TABLE III.  VOLTAGE SCALING POLICY 

CanaryS  CanaryL  Supply voltage 

Not predict Not predict  Decreased 

Not predict  Predict  Unchanged 

Predict  Predict  Increased 

Predict  Not predict ―  

 

An example of the voltage scaling using the dual-sensing 
canary is shown in Figure 8. Horizontal line shows time line. 
Vertical line shows supply voltage. Each Ix shows interval. 



When there is an excessive timing margin, the supply voltage 
is decreased. At t1, only canaryL predicts a timing error. Thus, 
in the next interval I3, the supply voltage is unchanged. At t2, 
canaryS predicts a timing error. Thus, the supply voltage is 
increased. In the next interval I4, the supply voltage is 
unchanged, because only canaryL predicts a timing error at t3. 
As you can see, we expect that useless voltage scaling is 
eliminated. 

 
Figure 8.  Voltage Scaling with Dual-sensing Canary 

VI. EXPERIMENTAL RESULT 

Figure 9 shows execution cycles relative to that of the 
baseline model. The org_m50 and org_m100 shows 
margin50% and margin100% in Figure 4, respectively.  
dual_m50 and dual_m100 show margin50% and margin100% 
in the case where the original canary is replaced with the dual-
sensing canary.  The execution time is improved to as much as 
the baseline case in all benchmark programs. The voltage 
oscillations are reduced. As you can see in Figure 10, EDP is 
improved to about 80% and 65% of the baseline in 
margin50% and in margin100%. 

 

Figure 9.   Execution Cycles Improvement via Dual-Sensing Canary 

 

Figure 10.  EDP Improvement via Dual-Sensing Canary 

VII. CONCLUSION 

In the DVS system, scaling the voltage suffers large 
performance overhead. Therefore, efficient control of voltage 
scaling is required. The traditional DVS system with the 
canary logic has the oscillation in supply voltage, which 
causes performance loss. In this paper, we introduced dual-
sensing canary that is a modification of the canary logic. We 
changed the voltage scaling policy by utilizing the dual-
sensing canary. We found that the performance loss is 
eliminated with the equivalent energy reduction. 
Unfortunately, the dual-sensing canary might cause an area 
overhead because of additional canary FFs. Currently, we are 
trying to reduce the area overhead by limiting the number of 
canary FFs. 
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