
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Mitigating Performance Loss in Aggressive DVS
Using Dual-Sensing Flip-Flops

Kunitake, Yuji
Kyushu University

Sato, Toshinori
Fukuoka University | Kyushu University

Yasuura, Hiroto
Japan Science and Technology Agency, CREST | Kyushu University

https://hdl.handle.net/2324/12463

出版情報：VLSI-SoC. 2008, pp.543-546, 2008-10-15
バージョン：
権利関係：

Mitigating Performance Loss in Aggressive DVS

Using Dual-Sensing Flip-Flops

Yuji Kunitake† Toshinori Sato‡†§ Hiroto Yasuura†§

†Kyushu University ‡Fukuoka University
§Japan Science and Technology Agency, CREST

y-kunitake@c.csce.kyushu-u.ac.jp

Abstract— Traditional worst-case design is becoming much

difficult. The increase in parameter variations requires large

design margins. However since the worst-case situations do not

always occur, the design margin is often overestimated. To

eliminate the excessive design margin, designers should focus on

typical case rather than worst case. We are investigating canary

logic that is one of the typical-case designs. The canary logic can

eliminate the excessive design margin by combined with Dynamic

Voltage Scaling (DVS) system. A naive combination of the canary

and the DVS suffers serious performance loss due to useless

voltage scaling. In this paper, we show where the performance

loss comes from and improve the canary logic to eliminate the

excessive design margin without performance loss.

I. INTRODUCTION

The deep submicron semiconductor technologies increase
parameter variations and thus the processer design becomes
more difficult [1,5,8,9]. Generally, processor’s maximum clock
frequency is determined by considering the worst-case critical
path delay and a safety margin. The margin is required since
delays are not constant due to parameter variations. The
parameter variations include process, voltage, and temperature
(PVT) variations. In the worst-case design, the critical path
delay and the margins are summed up and thus PVT variations
have a serious impact on supply voltage to satisfy required
operating frequency and to improve timing yield of
microprocessors. In other words, managing parameter
variations is a key to power reduction.

In the worst-case design, the parameters rarely become the
worst case. Considering the situations, we are investigating
typical-case design methodologies, which consider typical
cases rather than worst cases. In the typical-case design, the
margin is estimated by the typical case of parameters and thus
the constraints in processer design are relaxed. If the worst case
occurred, the processor would cause timing errors. Thus, we
have to assure the correct processor state by avoiding or by
recovering from timing errors.

Razor [2] is one of the typical-case designs, which permits
to violate timing constraints to improve energy efficiency.
Razor works at higher clock frequency than that determined
by the critical path delay. In order to detect timing errors,
Razor flip-flop (FF) is proposed. Each timing-critical FF
(main FF) has its shadow FF, which is expected to always hold
correct values. If the values latched in the main and shadow

FFs do not match, a timing error is detected. When the timing
error is detected in microprocessor pipelines, the processor
state is recovered to a safe point.

However, Razor can be further improved. We are
investigating canary logic [7], which does not detect but predict
timing errors by using canary FFs. Thus, the canary logic does
not need any recovery processes. We will find later in the
present paper that adopting the canary logic and the DVS on a
carry select adder (CSLA) shows the potential in energy
reduction of 31%. Unfortunately, the current canary logic
causes severe performance loss. In this paper, we analyze
where the performance loss comes from and solve the
performance loss problem.

This paper is organized as follows. Section II introduces the
canary logic. Section III explains the evaluation environment.
Section IV describes a problem in the canary logic. Section V
proposes dual-sensing canary to solve the problem. Section VI
presents experimental results. Finally, Section VII concludes
this paper.

II. CANARY LOGIC

The increase in parameter variations requires large design
margins. In order to eliminate the excessive design margin,
designers should focus on typical case rather than worst case.
As a typical-case design, we are investigating canary FF [7].

Figure 1. Canary Flip-Flop

The canary FF is augmented with a delay element and a
shadow FF, as shown in Figure 1. The canary FF is used to
detect a timing error. Every timing error is predicted by
comparing the main FF value with that of the shadow FF,
which runs into the timing error a little bit before the main FF.

Figure 2 explains how the DVS technique utilizes the
canary FFs. The horizontal and vertical lines present time and
supply voltage, respectively. At regular intervals, the supply
voltage is decreased if a timing error is not predicted during
the last interval. When a timing error is predicted to occur, the
supply voltage is increased.

Figure 2. Canary’s DVS

III. EVALUATION ENVIRONMENT

As a case study of the canary logic, we apply the canary
logic to a CSLA. In order to evaluate the DVS system using
canary logic, accurate circuit delay has to be considered. On
system designs, architectural-level simulators are a must-be
tool, which makes designers examine a wide variety of design
choices. Unfortunately, current architectural-level simulators
do not consider circuit delay and are inappropriate to evaluate
the DVS system using canary logic. In contrast, gate-level
simulation can estimate accurate circuit delay. However, the
gate-level simulations require huge amount of simulation time.
Therefore, we built a co-simulation environment, which
combine gate- and architectural-level simulators.

Figure 3. Co-simulation Framework

Figure 3 shows the framework of our co-simulator. The
left block is an architectural-level simulator, where the
behavior of the entire processer is simulated. The right block
is a gate-level simulation environment, where the CSLA with
the canary logic is simulated. The co-simulator behaves as
follow.

1. When an ADD or a SUB instruction is executed in the
architectural-level simulator, the gate-level simulator
is triggered with its operands.

2. The CSLAs in the gate-level simulation execute the
operation with the operands and the canary FFs
examines timing errors.

3. Gate-level simulation results are delivered to the
architectural-level simulator.

4. The supply voltage changes according to the gate-
level simulation results.

The co-simulation is executed by repeating these steps
from 1 to 4. In this way, when the delay information is
necessary, the architectural-level simulator asks the gate-level
simulator whether any timing errors are predicted or not.

TABLE I. PROCESSOR CONFIGURATIONS

TABLE II. FREQUENCY – VOLTAGE SPECIFICATIONS

The MASE simulator [6], is used for architectural-level
simulation. TABLE I summarizes processor configurations.
Seven integer programs from SPEC2000 CINT benchmark are
used. For each program, 1 billion instructions are skipped
before an actual simulation begins. After that each program is
executed for 1 billion instructions.

In the gate-level simulation, we design a 32bit CSLA.
SYNOPSYS DesignCompiler logic-synthesizes the CSLA
with Hitachi 0.18μm standard cell libraries. The combinations
of the clock frequency and the supply voltage of Intel Pentium
M [3], which is shown in TABLE II, are used. We project the
highest clock frequency, which is determined by CSLA’s
critical path delay reported by DesignCompiler and safety
margin for PVT variations, onto Pentium’s highest clock
frequency. The safety margins of 50% and 100% of the
CSLA’s critical path delay are assumed. In other words, we
assume that clock cycle time is 1.5 time and 2 time of the
CSLA’s critical path delay. The original canary’s delay is 10%
of the critical path delay. CanaryS and canaryL have 5% and
15% of the critical path delay as their delay, respectively. We
use the interval of 100K clock cycles. It is assumed every
supply voltage switching requires 10μs [4].

IV. PROBLEM IN CANARY LOGIC

In this section, we show the potential in energy reduction
and a problem in the canary logic.

Figure 4. Energy Consumptions

Figure 4 shows energy consumptions. Each bar represents
energy consumption relative to that of the baseline model.
margin50% and margin100% mean the safety margin of 50%
and 100% is provided. It is relative to the critical path delay.
In other words, we assume that clock cycle time is 1.5 time
and 2 time of critical path delay. In margin50%, energy can be
reduced by 23% on average. In margin100%, energy can be
reduced by 31% on average.

Figure 5. Execution Cycles

Figure 6. Energy Delay Product

In contrast, execution cycles are increased by about 40%
for all programs, as shown in Figure 5. Each graph is
normalized by the baseline execution cycles. Consequently,
energy efficiency is diminished. Figure 6 shows Energy Delay

Product (EDP). Each bar is normalized by the baseline EDP.
In margin50%, EDP is increased by about 8% for all programs.
The cause is performance overhead due to voltage scaling.
Every change in the voltage requires 10μs. The voltage scaling
strategy in the present paper shows an oscillation in supply
voltage. Since every supply voltage switching makes
processor unavailable during the transition, this oscillation has
a serious impact on performance and hence on power
efficiency. In order to avoid the supply voltage oscillation, the
canary’s DVS policy should be improved.

V. DUAL-SENSING CANARY

In order to avoid the performance loss due to the supply
voltage oscillation, we improve the canary logic. We call the
improved one dual-sensing canary. We change the voltage
scaling strategy.

Figure 7. Dual-Sensing Canary

Figure 7 shows the dual-sensing canary. It has two shadow
FFs, which are different in delay values. One has a smaller
delay and is called canaryS. The other has a larger delay and is
called canaryL. Hence, canaryL meets a timing error before
canaryS does. In addition, we change the voltage scaling
policy, as shown in TABLE III. If canaryL predicts an error
and canaryS does not predict it, the supply voltage is
unchanged in the next interval. If both canaryL and canaryS
predict errors, it implies that there is small margin in the main
FF. Thus, in order to avoid the error in main FF, the supply
voltage is increased. When any errors are not predicted during
the current interval in both canary FFs, there is sufficient
timing margin and hence the voltage is decreased.

TABLE III. VOLTAGE SCALING POLICY

CanaryS CanaryL Supply voltage

Not predict Not predict Decreased

Not predict Predict Unchanged

Predict Predict Increased

Predict Not predict ―

An example of the voltage scaling using the dual-sensing
canary is shown in Figure 8. Horizontal line shows time line.
Vertical line shows supply voltage. Each Ix shows interval.

When there is an excessive timing margin, the supply voltage
is decreased. At t1, only canaryL predicts a timing error. Thus,
in the next interval I3, the supply voltage is unchanged. At t2,
canaryS predicts a timing error. Thus, the supply voltage is
increased. In the next interval I4, the supply voltage is
unchanged, because only canaryL predicts a timing error at t3.
As you can see, we expect that useless voltage scaling is
eliminated.

Figure 8. Voltage Scaling with Dual-sensing Canary

VI. EXPERIMENTAL RESULT

Figure 9 shows execution cycles relative to that of the
baseline model. The org_m50 and org_m100 shows
margin50% and margin100% in Figure 4, respectively.
dual_m50 and dual_m100 show margin50% and margin100%
in the case where the original canary is replaced with the dual-
sensing canary. The execution time is improved to as much as
the baseline case in all benchmark programs. The voltage
oscillations are reduced. As you can see in Figure 10, EDP is
improved to about 80% and 65% of the baseline in
margin50% and in margin100%.

Figure 9. Execution Cycles Improvement via Dual-Sensing Canary

Figure 10. EDP Improvement via Dual-Sensing Canary

VII. CONCLUSION

In the DVS system, scaling the voltage suffers large
performance overhead. Therefore, efficient control of voltage
scaling is required. The traditional DVS system with the
canary logic has the oscillation in supply voltage, which
causes performance loss. In this paper, we introduced dual-
sensing canary that is a modification of the canary logic. We
changed the voltage scaling policy by utilizing the dual-
sensing canary. We found that the performance loss is
eliminated with the equivalent energy reduction.
Unfortunately, the dual-sensing canary might cause an area
overhead because of additional canary FFs. Currently, we are
trying to reduce the area overhead by limiting the number of
canary FFs.

ACKNOWLEDGMENT

We gratefully acknowledge comments and advices
provided by the members of the SoC Laboratory of Kyushu
University. Hitachi 0.18μm standard cell libraries are provided
by VDEC in the University of Tokyo. This work is partially
supported by the CREST program of Japan Science and
Technology Agency and by Grant-in-Aid for Scientific
Research (KAKENHI) (A) #19200004 and (B) #20300019
from Japan Society for the Promotion of Science.

REFERENCES

[1] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V.De,
“Parameter Variations and Impact on Circuits and Microarchitecture”,
ACM/ IEEE Design Automation Conference, 2003.

[2] S. Das, D. Roberts, L. S. Lee, S. Pant, D. Blaauw, T.Austin, K.Flautner,
and T.Mudge, “A Self-Tuning DVS Processor Using Delay-Error
Detection and Correction”, IEEE Journal of Solid-State Circuits, Vol.41,
No.4, 2006.

[3] S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh, A.
Saeed, Z. Sperber, and R. C. Valentine, “The Intel Pentium M Processor:
Microarchitecture and Performance”, Intel Technology Journal, Vol.7,
No.2, 2003.

[4] Intel Corporation, “Intel Pentium M Processor on 90nm Process with 2-
MB L2 Cache”, Datasheet, 2006.

[5] T. Karnik, S. Borker, and V. De “Sub-90nm Technologes: Challenges
and Opportunities for CAD”, International Conference on Computer
Aided Design, 2002.

[6] E. Larson, S. Chatterjee, and T.Austin, “MASE: A Novel Infrastructure
for Detailed Microarchitectural Modeling”, International Symposium on
Performance Analysis of Systems and Software, 2001.

[7] T. Sato and Y. Kunitake “A Simple Flip-Flop Circuit for Typical-Case
Designs for DFM”, 8th International Symposium on Quality Electronic
Design, 2007.

[8] X. Tang,V. K. De, and J. D. Meindl, “Intrinsic MOSFET Parameter
Fluctuations Due to Random Dopantplacement”, IEEE Transactions on
VLSI Systems, Vol.5, No.4, 1997.

[9] O. S. Unsal, J. W. Tschanz, K. Bowman, V. De, X. Vera, A. Gonzales,
and O. Ergin, “Parameter Variations and Impact on Circuits and
Microarchitecture”, IEEE Micro, Vol.26, No.6, 2006.

