
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Sampling Microarchitecture Simulator for Java
Workloads

Rao, Pradeep
Institute of Systems & Information Technology/KYUSHU | Department of Informatics, ISEE, Kyushu
University

Murakami, Kazuaki
Institute of Systems & Information Technology/KYUSHU | Department of Informatics, ISEE, Kyushu
University

https://hdl.handle.net/2324/11888

出版情報：Workshop on Tools, Infrastructures and Methodologies for the Evaluation of Research
Systems. 2008, pp.45-52, 2008-04-20
バージョン：
権利関係：



A Sampling Microarchitecture Simulator
for Java Workloads

Pradeep Rao and Kazuaki Murakami
Department of Informatics, ISEE, Kyushu University, Japan.

Institute of Systems & Information Technology/KYUSHU, Japan.

pradeep.rao@isit.or.jp

Abstract—JavaTMhas found widespread adoption across a va-
riety of architectures. Understanding Java application behavior
and further design and development of Java systems can be facil-
itated by software based microarchitecture simulators. However,
the use of cycle-accurate, user-mode, software microarchitecture
simulators in Java characterization studies are scarce and can
be attributed to the following reasons: (1) simulating Java ap-
plications require the simulator to implement additional features
necessary to support the Java runtime which allows dynamic
compilation, thread scheduling and garbage collection, (2) the
lack of such a simulator validated against actual hardware and
its inability to support contemporary Java applications, (3) the
complexity of Java applications and the intricate hardware that
needs to be modelled result in impractically long simulation time
for a single full run of the application, in turn adversely affecting
the design and development time for Java-based systems.

This paper seeks to address the impediments highlighted
above. We enhance the dynamic simplescalar (DSS) simulator
to support contemporary Java benchmark workloads. DSS is an
out of order superscalar simulator for the PowerPC instruction
set architecture and implements features required to support the
Java runtime. In order to mitigate simulation time with minimal
loss of accuracy, we implement statistical simulation sampling in
the DSS simulator. We employ systematic sampling to measure
in detail, only a small portion of the entire application being
simulated. The application of established statistical sampling
techniques allows us to evaluate performance parameters to the
desired accuracy and allows us to attribute confidence levels to
our estimates of performance. Finally, we validate our enhanced
simulator against actual PowerPC hardware using its on-chip
performance monitoring unit.
Results show that our implementation of statistical sampling in

DSS is able to track actual machine performance and achieves an
average speedup of over 12x when simulating Java applications.
Our validated simulator should help system designers accelerate
microarchitecture design space exploration of Java applications.

I. INTRODUCTION

JavaTMis widely used across a variety of hardware platforms

ranging from embedded systems and desktop computers to

high end enterprise servers. Designing and optimizing sys-

tems for Java execution across different system architectures

requires an understanding of program execution characteristics

and the effect of system parameters on different aspects of

performance. Software-based microarchitecture simulators[1]

frequently help computer architects quickly evaluate and ex-

plore this design space and obtain quantitative estimates of

expected performance. Microarchitecture simulators also help

model innovative architectures and optimize processors in the

design phase – a distinct advantage over characterization stud-

ies based on direct measurements on current machines. Despite

these benefits, Java characterization studies and published re-

search that explore the design space for Java applications have

rarely employed cycle accurate microarchitecture simulators.

We attribute the scarcity of such design data to the following

impediments:

Simulating Java applications requires the typical user-mode

microarchitecture simulator to implement additional features

to support the Java runtime that allows for dynamic compi-

lation, thread scheduling and garbage collection. The simu-

lator also needs to be validated against actual hardware to

document modelling errors thereby increasing the rigor of

simulation studies that use the simulator. Furthermore, the

complexity of contemporary Java applications coupled with

the need to model complex processor microarchitectures result

in extremely long simulation time for a detailed run of the

benchmark application. In several cases the simulation takes

days, if not weeks, for a detailed run of the complete bench-

mark program for a specified microarchitecture configuration.

This makes effective design space exploration cumbersome

and time-consuming and thus adversely impacts the design

and development of Java based systems.

This paper describes our work that addresses the impedi-

ments mentioned above. We enhance the dynamic simplescalar

(DSS) simulator to evaluate contemporary Java benchmarks.

DSS[2] is a configurable out of order superscalar simulator for

the PowerPC instruction set architecture and is based on the

popular simplescalar[3] toolset. In addition to modeling mi-

croarchitecture components such as branch predictors, caches,

etc., the simulator also implements features required to support

our chosen Java runtime – the IBM Jikes research virtual

machine.

In order to accelerate simulation speeds, we employ sys-

tematic sampling to measure in detail, only a small portion

of the entire application being simulated. The application of

established statistical sampling techniques allow us to evaluate

performance parameters to the desired accuracy and also to

attribute confidence levels to our estimates of performance.

We implement statistical sampling in the DSS simulator and

validate our implementation against actual hardware using the

performance counters available on the PowerPC processor. We

hope that these measures will assist designers and architects

drive design space exploration of Java applications.



The rest of the paper is organized as follows: In Section II

we briefly describe the core features of, and our additions to,

the DSS simulator to enable execution of contemporary Java

applications. We then introduce statistical sampling as applied

to microarchitecture simulation and detail our implementation.

The framework for our experiments is discussed in Section III

and the results of our study are contained in Section IV. We

discuss our work in relation to earlier research in Section V

and conclude this paper with our plans for further work in

Section VI.

II. IMPLEMENTATION DETAILS

A. Supporting the Java Runtime

We first highlight the features and requirements of our Java

runtime and describe alongside, how DSS implements features

that support the requirements of the Java runtime. In Section

II-B we briefly introduce statistical sampling theory and de-

scribe its implementation in our microarchitecture simulator.
Our evaluations use the Jikes research virtual machine

RVM [4], an open source Java virtual machine from IBM

implemented mostly using the Java programming language.

The RVM provides a family of compilers, infrastructure for

adaptive optimization and implements several memory man-

agement policies. The Java runtime can be broadly divided

into the following major components:
1) Core runtime: consisting of the thread scheduler, class

loader, verifier, etc. This component manages the underlying

data structures required for application execution and inter-

faces with the libraries. Several of these features rely on

support for exception handling (e.g., array bounds checking)

and Unix signals (e.g., SIGSEGV, SIGALRM, SIGTRAP).

The DSS simulator implements a virtual memory model and

signal handling mechanisms to handle these requirements. The

flow chart for the implementation of signal handling in the

DSS simulator is shown in Figure 1.

SIGRET 

?

Set signal masks/handlers

Restore saved registers

Emulate Instruction

Signal Arrived 

?

No

No

Yes

Yes

Simulation Loop

2. Save environment values

1. Save registers

3. Set PC to signal handler

4. Set return_address to SIGRET

Fig. 1. Signal handling as implemented in the DSS simulator

Supporting Java threads: Java threads (both VM and ap-

plication) in the JikesRVM are multiplexed onto one (or

more) virtual processor(s), corresponding to each physical

processor in a multiprocessor system. However, since DSS

Instruction Description
dcbst store cache block to memory
sync wait for update
icbi invalidate I-cache copy
isync instruction fetch synchronization
mfspr move from special purpose register
mftb move from time base
lwarx load word & reserve indexed
stwcx store conditional
eieio enforce in-order IO execution
twi/twi trap word

TABLE I
ADDITIONAL POWERPC INSTRUCTIONS IMPLEMENTED IN DSS

is a uniprocessor simulator, we build the JikesRVM to use

only one virtual processor by setting the preprocessor directive

RVM_FOR_SINGLE_VIRTUAL_PROCESSOR. This ensures

that all threads are scheduled onto one processor. DSS also

supports locks by implementing the lwarx and stwcx in-

structions. The JikesRVM uses simple time slicing to achieve

load balancing and relies on timer signals to switch Java

threads. DSS implements a timer mechanism and keeps it

updated with the simulation time in proportion to the time

elapsed since program start. Expiry of the timer generates a

SIGALRM which is delivered to the virtual machine using the

signal mechanism implemented (see Figure 1).

2) Compilers and Adaptive Optimization system: The com-

piler dynamically translates Java bytecode into executable

native machine code. The Jikes RVM implements three kinds

of compilers: baseline, quick and optimizing. The baseline

and quick compilers seek to reduce compilation time using

a simple single pass compiler. The quick compiler improves

over the baseline version by employing optimizations that

enhance performance without significant overheads in compi-

lation time. When using the optimizing compiler, each method

to be optimized goes through a series of intermediate stages

with various optimizations being applied at each stage. Thus,

the optimizing compiler aims to enhance performance at the

expense of the time required for compilation.

The adaptive optimization system seeks to improve per-

formance by profiling the executing application and using

the optimizing compiler only when appropriate. In order

to support dynamic compilation, DSS does away with the

instruction predecode mechanism of simplescalar and decodes

instructions as they are fetched from the simulated memory.

Jikes ensures cache coherence during dynamic compilation by

first storing updated D-cache contents into memory (dcbst),

as there isn’t a direct path from the code installed in the

D-cache to the I-cache. These locations in the I-cache are

then invalidated (icbi) and the pipeline flushed (isync) to

prevent stale instructions from committing.

3) Memory Managers: are responsible for the allocation

and collection of objects during runtime and is implemented

in the memory management toolkit - MMTk [5]. The toolkit

implements different allocation-collection plans and are de-

tailed in [6], [5].

The additional instructions and system calls implemented



System Call Description
mmap map memory pages
sigprocmask change list of currently blocked

signals
sigaction specify action to take on signal
kill send a specified signal to a pro-

cess/process group
getitimer/setitimer read/write interval timer
mkdir create directory

TABLE II
ADDITIONAL SYSTEM CALLS IMPLEMENTED IN DSS

in the DSS simulator are shown in Table I and Table II

respectively.

B. Statistical Sampling for Microarchitecture Simulation

We first outline the theory used and then detail our imple-

mentation of sampled microarchitecture simulation.

Statistical sampling techniques attempt to estimate param-

eters of a population using identical, independent samples

drawn from the population. The sample mean Y and standard

deviation S for a random sample of n observations Y1, Y2...Yn

from a normal population with mean µ and standard deviation

σ are given by Equations 1 and 2.

Y =

∑n
i=1 Yi

n
(1)

S =

[∑n
i=1(Yi − Y )2

n − 1

]1/2

(2)

T =
(Y − µ)

ŝ
(3)

The estimated standard deviation (ŝ) of the sample mean Y
is given by ŝ = S/

√
n and the random variable T (Equation 3)

has a Student’s-t distribution with (n− 1) degrees of freedom
[7]. It follows that the probability that the interval given by

Equation 4 contains the population mean µ is (1 − α). The

quantile value t(1−α

2
,n−1) of T can be determined, given α

and n.

Y ± t(1−α

2
,n−1)

S√
n

(4)

Thus, given the desired confidence interval, we can estimate

the number of samples n required to bound the error ǫ to

ǫ = t(1−α

2
,n−1)

S√
n

(5)

Alternately, the equation above can be used to determine

error in a sampling experiment at a given confidence specified

using α. We use these two properties of equation 5 to quantify

the error and confidence in our simulation experiments and

to tune our simulation to achieve the desired error bound at

predetermined confidence. We note that, for practicality, when

the degrees of freedom are relatively large (n ≥ 30) the t-
distribution can be approximated by the standard normal [7].

Application to Microarchitecture Simulation:

Complete simulation of a Java benchmark is a time consum-

ing process. To accelerate simulation, we simulate and measure

only a small fraction of the entire dynamic instruction stream.

We chose to implement systematic sampling as an approxima-

tion to random sampling due to its ease of implementation in

an execution driven simulator such as the DSS.

The simulator primarily operates in three distinct modes as

illustrated in Figure 2:

Measuring Mode (M): In this mode the simulator performs

detailed simulation of the specified microarchitecture config-

uration. M consecutive instructions in the dynamic instruction

stream constitute a sampling unit. Systematic sampling of M

instructions begins at an offset of j instructions and repeats

every k ·M instructions until program termination. The cycles

per instruction (CPI) is estimated (Equation 1) based on the

measurements obtained from n samples of M instructions that

are simulated in detail.

Warming Mode (W): Detailed simulation is initiated W in-

structions before starting measurement (M-mode). This is done

to warmup large structures (e.g., caches, branch predictors,

pipeline state etc.) and avoid introducing significant bias which

are otherwise introduced in the measurements [8].

Functional Mode (FF): In this mode the simulator performs

fast functional simulation while maintaining only the archi-

tected state (registers and memory). None of the microarchi-

tecture components are simulated or updated. Before starting

functional simulation, the simulator completes instructions

pending in the pipeline and load-store buffers and handles all

queued signals.

Since detailed warming adds to the simulation time, this

interval between two successive detailed simulation modes

(M(k − 1) − W instructions) can also maintain selective

microarchitecture state (caches and branch predictors) at low

overheads in addition to carrying out functional simulation.

This is referred to as functional warming and is effective in

reducing the number of instructions that are otherwise required

to be simulated in detail in W-mode [8].

III. EXPERIMENTAL FRAMEWORK

This section describes our experimental setup and method-

ology in detail.

A. Processor Simulator

We use a modified version of the DSS processor simulator

for our evaluations. DSS is a detailed, cycle accurate super-

scalar processor simulator for the PowerPC instruction set

architecture. DSS supports the Java runtime with additional

features already detailed in Section II-A. Our version of the

DSS simulator implements simulation sampling and models

the memory system in detail. Specifically it models miss status

handling registers (MSHR), store buffers and interconnect

bottlenecks.

The simulator is compiled with the gcc v3.3 compiler using

-O2 level optimizations. The simulator is run on a Sun Fire

(Two Dual-core OpteronTM290 processors, 8GB RAM) host



Fast Forwarding (FF)

Warming (W)

Measuring (M)

FF

M
W

j j+2k.Mj+k.M j+nk.M
Dynamic Instructions

Fig. 2. Sampling Microarchitecture Simulation

running the Linux kernel 2.6.9. While measuring simulation

time on this host we use processor affinity to bind each

simulation process to a specific core and thus reduce overheads

due to process migration.

The reference hardware platform (PowerMac G5) used

to validate our simulator fidelity is based on the 2.0GHz

PowerPC 970FX processor. The processor parameters used

in our simulations are drawn from PowerPC manuals[9] and

the memory and cache latencies are extracted using low level

benchmarks[10], [11]. The resulting parameters are docu-

mented in Table III.

Parameter Description
Pipeline 4 stage
Issue Width 8 way
L1 I-Cache (I$) 64KB, direct mapped, 128B line-size, VIPT,

1cycle read/write, LRU replacement
L1 D-Cache (D$) 32KB, 2-way set associative, 128B line-size,

VIPT, 1cycle read/write, LRU replacement
L2 Cache 512KB, 8way set associative, LRU replace-

ment
ITLB/DTLB 4way, 128 entries/ 4way
L1/L2/Mem. Latency 1/5/125 cycles
Functional Units 2 I-ALU, 1 I-MUL/DIV, 2 FP-ALU, 1 FP-

MUL/DIV
Branch predictor combined, 16K table, 3 cycle misprediction

latency, 1 prediction/cycle, 16entry RAS, 256
entry BTB

TABLE III
MACHINE CONFIGURATION USED IN THIS STUDY

B. Virtual Machine

We use the JikesRVM v2.4.4 runtime, an open source JVM

written in Java. For accurate comparisons, the exact same

compiled binary, memory images and libraries are used on

both the hardware we model as well as on the simulator. All

Java classes are precompiled with assertions disabled. We use

the adaptive compiler and the semispace garbage collector for

our studies. Some experiments employ the replay compiler [6]

to eliminate mutator variations due to the adaptive compiler

and are documented in [12].

All our experiments consider a per benchmark heap size

as in [13]. We vary heap size starting from the minimum

heap size and increase the heap size in steps of 0.5 times

this minimum heap size upto a maximum heap size of 6

times the minimum heap size. We observe from [13] that

the varying effect of garbage collection on performance can

be captured within this range. The minimum heap size is

determined empirically to be the least heapsize at which the

Java application can execute without failure due to out-of-

memory errors. The minimum heap size per benchmark thus

obtained is shown in Table IV

C. Benchmarks

Our workload is drawn from three different benchmark

suites: SPECjvm98 [14], DaCapo [15] v2006-10-MR2 and the

Java Grande [16] suites, representative of contemporary real

Java applications.

Table IV lists the benchmark applications, a brief descrip-

tion, the input set used and the minimum heap size required to

run the benchmark on our platform. We also list the average

number of instructions and its standard deviation as measured

over five runs of the application on our hardware platform.

These measurements were obtained using on-chip performance

monitors described next.

D. Performance Counters

We use the IBM pmcount [17] tool for the Linux oper-

ating system to access the PowerPC performance counters.

The 970FX processor performance monitoring unit (PMU)

has eight 32bit counters that can be configured to monitor

several dynamic events such as cache misses, cache references,

instructions completed, cycles elapsed, etc. Additional kernel

modules provide 64bit virtual counters and the ability to

collect per-process data.

We take the following steps to minimize measurement noise:

(1) we enable only one processor during kernel boot by setting

the kernel parameter max_cpus (PowerMac G5 is a dual

processor machine). This prevents overheads due to process

migration and excludes counts from the other processor, (2)

all experiments are performed in single user mode by turning

off all redundant applications, daemons, cron jobs running on

the system. We have observed that measurements thus obtained

tend to reduce the variability in measurements.

IV. VALIDATION RESULTS

Our experiments using sampled simulation demonstrate that

the parameters described next, result in ǫ < 2% (Eq. 5)

for almost all benchmark applications: Each sampling unit

measures in detail, 1000 instructions (M=1000) and we begin

sampling at an offset of 1000 instructions (j=1000). The de-

tailed simulation for processor (simulated) state warmup lasts



Benchmark Description Input Min.heap(MB) Instructions,in M (σ)
compress file compression -s100 16 13,093 (261)
jess expert shell system -s100 10 120,161 (1856)
raytrace raytracing -s100 20 12,101 (155)
db database -s100 24 17,241 (281.5)
mpegaudio MPEG-3 audio decompression -s100 8 19,930 (715)
mtrt multithreaded raytracer -s100 24 17,240 (463)
jack java parser generator -s100 10 51,049 (3331)
hsqldb SQL relational database medium 176 20,451 (1588)
luindex document indexing medium 28 51,684 (725)
euler computational fluid dynamics size A 20 37,378 (133)
search α− β pruned search size A 16 27,018 (299)
md molecular dynamics simulation size A 10 9,487 (63)
mc Monte-Carlo simulation size A 176 21,117 (157)
rtracer 3D raytracer size A 8 35,584 (157)

TABLE IV
BENCHMARKS CONSIDERED IN THIS PAPER: SPECJVM98, DACAPO AND JAVAGRANDE

2000 instructions (W=2000) as shown in Figure 2. We collect

samples at every 1000 M-intervals (k=1000), i.e., one sample

of 1000 instructions is measured every 1000,000 instructions.

We first quantify the accuracy of sampled simulation against

detailed simulation. Due to excessively long simulation time

for detailed simulation, we perform this comparison only for

the SPECjvm98 benchmark applications at two heap sizes –

minimum heap size and 1.5 times the minimum heapsize.

The measured CPI for detailed simulation and the estimated

CPI for sampled simulation are shown in Figure 3. The thin

bands over the estimated (sampled simulation) CPI bars in

the figure provide the confidence interval at α = 0.997. We

observe that on an average, the CPI estimated using sampled

simulation is within 6.5% (heap = min.heap) and 12.5%

(heap = 1.5·min.heap) of the CPI measured using detailed

simulation. These differences are significantly higher than that

obtained when using sampled simulation for SPEC-CPU2000

benchmarks in [8]. However, the average simulation speedup

exceeds 12x as shown in Table V. This translates to a reduction

in simulation time from an order of days to a few hours at

most.

Validating simulator fidelity:

The microarchitecture of the PowerPC 970FX processor has

several nuances (e.g., deep pipelines, hardware prefetch, etc.)

that we do not model in DSS due to its complexity and to

avoid loosing the flexibility with which we can model different

instances of the PowerPC architecture without binding our-

selves to one implementation. Hence, we do not compare exact

performance metrics between the simulator and hardware.

Instead, we quantify the extent to which our simulator is able

to track hardware performance, so as to enable the use of our

accelerated simulator in comparative studies which will reflect

equivalent hardware performance.

Figure 4 shows a scatter-plot of the machine cycles reported

by the PMU against cycles estimated by our sampling simula-

tor for each of the benchmark applications at six different heap

sizes. We observe that the association is linear in most cases.

A similar scatter plots for another metric – D-cache misses is

shown in Figures 5.

compress jess raytrace db mpegaudio mtrt jack average

Heap = min.Heap

C
P

I

0
1

2
3

4
5

6

compress jess raytrace db mpegaudio mtrt jack average

Heap = 1.5 x min.Heap

C
P

I

0
1

2
3

4
5

6

Fig. 3. Sampling simulation accuracy for SPECjvm98. Dark bars: Detailed
simulation, Light bars: Sampled simulation

We quantify the degree of linear association using statistical

tests that measure correlation between the performance esti-

mated by our simulator and the PMU reported performance.

The correlation between two variables reflects the degree of

association between them. Specifically, we use the following

two statistical tests:

Pearson’s product moment correlation coefficient r, is a

measure of linear relation between two variables and is given

by Equation 6. The coefficient r ranges from +1, indicating a

perfect positive linear relationship to −1, indicating a perfect

negative linear relationship between the variables. A score of

zero implies that there is no linear relation between the two

variables.



Sim.Time(minutes) compress jess raytrace db mpegaudio mtrt jack Average
Detailed 421 4780 613 756 1416 806 1970 1537.4
Sampling 88 361 61 69 64 70 136 121.1
speedup 4.7x 13.2x 10.1x 11x 22x 11.5x 14.5x 12.7x

TABLE V
REDUCTION IN SIMULATION TIME FOR SPECJVM98 WHEN USING SAMPLED SIMULATION

r =

∑

XY −
∑

X
∑

Y

N
√

[

∑

X2 −
(

∑

X
)

2

N

][

∑

Y 2 −
(

∑

Y
)

2

N

]

(6)

Spearman’s rank correlation coefficient ρ, also measures

the degree of linear association between two variables and

is similar to Pearson’s correlation, except that the samples

are converted into ranks before computing the coefficient.

Additionally, Spearman’s statistic does not assume that the

variables are normally distributed.

Table VI shows the values of the two correlation coefficients

(ρ, r) computed for the performance metrics – total cycles, L1

D-cache misses and all L1 D-cache references. The correlation

coefficients express the degree of linear association between

the measured (PMU) performance metric and the estimated

(simulator) performance metric at the minimum heap size

for each benchmark application. We observe that there is a

strong linear relationship between the simulator and PMU

measurements for both total cycles as well as L1 D-cache

references across most of the benchmarks.

However, the correlation on L1 D-cache misses are not easy

to interpret for some of the benchmarks. We hypothesize that

this is due to features on the 970FX processors that we do not

model – especially the prefetcher and the perfetch and victim

caches. This hypothesis is strengthened by the fact that there

is a good correlation when the number of references to the

L1 D-cache is considered (Table VI), but not with the misses

tracked for the L1 D-cache.

We have also observed high correlation between the PMU

and simulator when data TLB misses are considered as

the performance metric. This indicates that our accelerated

microarchitecture simulator is very effective at tracking real

hardware performance and makes it extremely useful in com-

parative studies that evaluate microarchitecture enhancements

to processor designs.

V. RELATED WORK

Simulating Java applications: Our goal in enhancing the DSS

simulator was to have a platform that allows Java charac-

terization studies at the microarchitecture level. We briefly

review current microarchitecture simulators and their support

for the Java runtime in general and the JikesRVM in particular.

Java characterization studies that employ these simulators are

indicated where appropriate. Note that JikesRVM currently

supports only the PowerPC and the x86 (32bit only) processor

architectures.

Application
Total Cycles D$ misses D$ references
r ρ r ρ r ρ

compress 0.94 0.95 0.89 0.45 0.91 0.79
db 0.97 0.93 0.3 -0.08 0.85 0.80
euler 0.99 0.97 0.99 0.93 0.99 0.89
hsqldb 0.98 0.29 0.69 -0.082 0.99 0.51
jack 0.99 1 0.99 1 0.99 1
jess 0.99 1 0.99 1 0.99 1
luindex 0.94 0.87 0.76 0.7 0.97 0.9
mc 0.86 0.55 0.98 0.67 0.97 0.74
md 0.99 0.92 0.07 -0.21 0.99 0.9
mpegaudio 1 0.83 0.88 0.3 0.99 0.7
mtrt 0.69 0.76 0.99 0.96 0.76 0.81
raytrace 0.99 0.83 1 0.98 1 0.94
rtracer 0.99 0.9 0.99 0.96 0.98 0.96
search 1 1 1 0.95 1 0.99

TABLE VI
CORRELATION BETWEEN SIMULATOR AND PERFORMANCE COUNTER

READINGS (PMU) FOR THREE METRICS

Li et.al. [18] characterize the SPECjvm98 [14] benchmarks

using SIMOS [19], a complete system simulator that can

also simulate operating system effects. However, the PowerPC

variant from IBM neither supports a detailed processor model

nor does it feature a timer model. SimICS [20], another full

system simulator is also inadequate for our purpose due to

the lack of a detailed processor model. The general execution

driven simulator (GEMS [21]) builds on SimICS by adding a

multiprocessor memory system simulator and an interconnect

model to it. It also provides a timing model for the SPARC

architecture, but does not implement the full ISA or any

devices.

Radhakrishnan et.al. [22] characterize Java runtime systems

at the bytecode level using the Kaffe [23] virtual machine.

They characterize Java cache performance using trace based

simulation tools. A similar approach is also reported in [24]

and [25].

Other tools such as PSIM [26], RSIM [27] and simplescalar

[3] are unable to simulate the Java runtime as they lack support

to handle signals. PTLsim [28] is a high performance cycle-

accurate simulator and virtual machine for the x86 and x86-64

instruction sets. However, at the time of writing this paper,

signal handling support for 32bit x86 applications on PTLsim

seems to be broken [29].

Simulator validation is critical to lend credibility to the stud-

ies that use it and is emphasized in the study by Desikan et.al.

[30] as well as in the considerable time and effort processor

manufacturers expend in ensuring that their simulators track

hardware as closely as possible.

Accelerating microarchitecture simulation: The impracticality



Fig. 4. Scatter-plot of PMU reported cycles versus total simulated cycles (in M-mode)

of simulating complex Java benchmarks to completion and

unascertained modelling accuracy of the simulator on con-

temporary Java workloads has mitigated the usefulness of the

DSS simulator. We implement simulation sampling [8] for

Java simulation in DSS due to its effectiveness in reducing

simulation time.

An earlier study [8] on using simulation sampling when

simulating general purpose programs has shown that it lowers

simulation time and offers higher accuracy in comparison with

other techniques based on simpoint [31]. However, we observe

that the average simulation error for sampled simulation of

Java workloads are about 6% higher than that for general

purpose SPEC-CPU2000 applications.

VI. CONCLUSION AND FUTURE WORK

This paper makes the following key contributions: (1) We

enhance the DSS simulator to support contemporary Java

benchmarks and our performance evaluations are carried out

with statistical rigor using the latest Java workloads drawn

from three different benchmark suites. In comparison to the

earlier study [2] we also employ a relatively recent version of

the JikesRVM which implements several bug fixes, improves

compiler optimizations and hosts an efficient memory manage-

ment toolkit (MMTk) [5]. (2) We implement statistical sam-

pling [8] in DSS to accelerate microarchitectural simulation.

We describe our implementation and quantify the performance

of statistical sampling over full length simulation of the

SPECjvm98 benchmarks. (3) We validate and compare the

fidelity of our enhanced simulator using performance measures

obtained from actual PowerPC hardware using its performance

counters. These measures help determine modelling adequacy

and document the deviation from actual system behavior. The

latest patch against DSS and a detailed technical report on

the implementation and evaluation of simulation sampling in

DSS can be found at [12]. We aim to keep [12] continuously

updated with improved data and methodology, contributed

during the course of our research.

Since sampled simulation can reduce simulation time, future

efforts can be directed at improving modelling accuracy.

Potential candidates for modelling effort are longer pipelines

and prefetch instructions.

VII. ACKNOWLEDGMENTS

Pradeep Rao is supported by ISIT under the JET Pro-

gramme. The authors wish to thank the anonymous reviewers,

Prof S.K. Nandy, Prof. Matthew Jacob (IISc) and Lovic Gau-

thier, Victor Goulart (ISIT) for their comments and Norifumi

Yoshimatsu for his timely help with resources for simulation.



Fig. 5. Scatter-plot of PMU reported D-cache misses versus total D-cache misses reported by simulator (M-mode)

REFERENCES

[1] J. Yi, L. Eckhout, D. Lilja, B. Calder, L. John, and J. E. Smith, “The
future of simulation: A field of dreams?” in IEEE Computer, 2006.

[2] X. Huang et.al., Dynamic SimpleScalar: Simulating Java Virtual Ma-
chines. TR-03-03, Department of Computer Science, UT Austin, 2003.

[3] K. Sankaralingam et.al., SimpleScalar simulation of the PowerPC ISA.
TR-00-04, Department of Computer Science, UT Austin, 2001.

[4] B. Alpern et.al., “The Jalapeño virtual machine,” in IBM Systems
Journal, vol. 39, no. 1, Jan 2000.

[5] S. M. Blackburn et.al., “Oil and water? High performance garbage
collection in Java with MMTk,” in ICSE, 2004.

[6] The Jikes Research Virtual Machine. Users Guide v2.4.4, 2006.
[7] G. Canavos, Applied Probability and Statistical Methods. Little Brown

and Company Limited, 1984.
[8] R.E. Wunderlich et.al., “SMARTS: Accelerating microarchitecture sim-

ulation via rigorous statistical sampling.” in ISCA, 2003, pp. 84–95.
[9] “IBM PowerPC 970FX RISC microprocessor: User’s manual v1.6,” IBM
Corporation, 2005.

[10] L. McVoy and C. Staelin, “lmbench: Portable tools for performance
analysis,” in USENIX Annual Technical Conference, 1996.

[11] R. H. Saavedra and A. J. Smith, “Measuring cache and TLB perfor-
mance and their effect on benchmark runtimes,” IEEE Transactions on
Computers, vol. 44, no. 10, pp. 1223–1235, 1995.

[12] Pradeep Rao, Technical Report and DSS patch, 2008, www.isit.or.jp.
[13] S M Blackburn et.al., “Myths and realities: The performance impact of

garbage collection,” in ACM SIGMETRICS, June 2004.
[14] Standard Performance Evaluation Council, “SPECjvm98 benchmark,”

http://www.spec.org/jvm98.
[15] S.M. Blackburn et.al., “The DaCapo benchmarks: Java benchmarking

development and analysis,” in OOPSLA ’06, Oct. 2006.
[16] Java Grande, ”www.epcc.ed.ac.uk/research/activities/java-grande/”.

[17] “Pmcount for linux on power architecture,” IBM alphaWorks. [Online].
Available: www.alphaworks.ibm.com/tech/pmcount

[18] T. Li, L.K. John et.al., “Using complete system simulation to character-
ize SPECjvm98 benchmarks,” in ICS, 2000.

[19] M. Rosenblum, “Complete computer system simulation: The SimOS
approach,” IEEE Parallel and Distributed Technology: Systems and
Applications, vol. 3, no. 4, pp. 34–43, 1995.

[20] P. S. Magnusson et.al., “SimICS: a full system simulation platform,”
IEEE Computer, vol. 35, no. 2, pp. 50–58, 2002.

[21] Milo Martin et.al., “Multifacet’s general execution-driven multiprocessor
simulator (GEMS) toolset,” SIGARCH Computer Architecture News,
vol. 33, no. 4, 2005.

[22] R. Radhakrishnan, “Java runtime systems: Characterization and archi-
tectural implications,” IEEE Trans. Computers, vol. 50, no. 2, 2001.

[23] Kaffe, http://www.kaffe.org.
[24] Y. Shuf et.al., “Characterizing the memory behavior of Java workloads:

a structured view and opportunities for optimizations,” in ACM SIG-
METRICS, 2001.

[25] J.-S. Kim and Y. Hsu, “Memory system behavior of Java programs:
methodology and analysis,” in ACM SIGMETRICS, 2000.

[26] A. Cagney, “PSIM - Model of the PowerPC architecture.” [Online].
Available: http://sourceware.org/psim/

[27] V. Pai, P. Ranganathan, and S. Adve, “RSIM reference manual, version
1.0. ECE TR 9705, Rice University,” 1997.

[28] M. T. Yourst, “PTLsim: A cycle accurate full system x86-64 microar-
chitectural simulator,” in IEEE ISPASS, 2007, pp. 23–34.

[29] M. Yourst, “PTLsim developers mailing list,” Dec 2007.
[30] R. Desikan et.al., “Measuring experimental error in microprocessor

simulation,” in ISCA, 2001.
[31] E. Perelman et.al, “Using simpoint for accurate and efficient simulation.”

in ACM SIGMETRICS, 2003.


