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ABSTRACT 
As the transistor feature sizes and threshold voltages reduce, 
leakage energy consumption has become an inevitable issue for 
high-performance microprocessor designs. In order to solve the 
energy issue, a number of techniques to reduce the cache leakage 
energy have so far been proposed. However, the low-leakage 
caches affect negatively the processor performance due to the 
accesses to non-state-preserving sleep-mode lines. In this paper, 
we analyze the access behavior on a low-leakage cache and show 
a remarkable observation for the density of sleep-line accesses. 
Based on this observation, we propose a new cache management 
technique to alleviate the performance degradation caused by 
low-leakage caches. In our approach, a small number of cache 
lines which are frequently accessed in the sleep mode are forced 
to stay in always-active mode. Although this mode is high leakage, 
it saves the state. Thus, the performance overhead caused by the 
leakage optimization can be eliminated. 
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1. INTRODUCTION 
Due to the popularization of battery operated devices 

such as laptop and hand-held computers, energy 
consumption has become a key constraint in 
microprocessor designs. The energy dissipated in CMOS 
circuits consists of two parts: dynamic energy and static (or 
leakage) energy. The dynamic energy is consumed by 
charging and discharging load capacitances in circuits, 
while the leakage energy is wasted by leakage current in 
non-ideal transistor operations, i.e., incomplete turning off. 
With the increasing number of transistors employed in a 
chip and the continuing reduction in threshold voltages of 
these transistors, leakage energy has become a major 
concern. Especially, reducing the leakage in on-chip caches 
is essential, because of a tendency that a significant portion 
of transistor budget in microprocessors is invested to on-
chip memories. For example, in the case of a 0.07μm 

process technology, it has been estimated that leakage 
energy accounts for 70% of total cache energy [5]. 

To challenge the leakage issue, a number of researchers 
have proposed efficient leakage reduction techniques 
([2]~[4], [5]~[12], [15] [16]). To reduce the cache leakage, 
it is required to support at least two operation modes; a 
conventional high-leakage mode (or active mode) and an 
optimized low-leakage mode (or sleep mode). Furthermore, 
there are two options to implement the sleep mode; non-
state-preserving and state-preserving. The former gates the 
supply voltage to SRAM cells, thus large amount of 
leakage is reduced, but performance is negatively affected 
due to losing the data in the SRAM cells [5][11]. While the 
latter can be implemented by optimizing the supply voltage 
as DVS ([2][7]) or the transistor threshold voltage as VT-
CMOS [3]. This approach can maintain the cache-hit rates 
of non-optimized conventional caches. In state-preserving, 
the sleeping line needs to be transited to the active mode 
before the SRAM access is started. It can alleviate the 
performance impact, but leakage reduction is not as high as 
the non-state-preserving scheme. With the advances of 
VLSI technology, changing the supply voltage at run time 
may become harder and harder due to the effects of wire 
delay, Vdd noise, and so on. Furthermore, the speed of 
microprocessors tends to be increased. As the results, it 
becomes difficult to materialize low supply voltage which 
does not destroy for state-preserving. In addition, the 
reference [9] reports that the state-preserving scheme is 
weak to the soft error. Therefore, we expect that the non-
state-preserving approach becomes mainstream, and focus 
on this approach in this paper. 

The non-state-preserving approach stops the supply 
voltage of corresponding line and ruins the data. Thus, a 
miss is surely made in the reference to a sleep mode line. If 
the data referred to again is lost, the number of miss 
increases as compared with the conventional cache which 
does not use the leakage reduction technique. It causes the 



performance degradation of the processor. We call this 
miss “Sleep-miss”. In in-order execution, sleep-miss 
inflicts heavy damage on the processor performance, 
because the next instruction cannot be executed. In our 
evaluation, we have noticed that it has been observed that 
in the worst case, the processor performance is degraded by 
37%. 

To solve the performance problem in low-leakage caches, 
in this paper, we propose a new cache management 
technique. First, we analyze the characteristics of access 
behavior on a low-leakage L1 data cache and show that 
some cache lines have extremely high degree of sleep-miss 
density, i.e., a small number of lines are responsible for the 
majority of sleep-miss. Based on this observation, we 
propose a new operation mode, called always-active mode. 
In our approach, the cache lines which cause frequently the 
sleep-misses are forced to stay in the active mode. We then 
evaluate the energy-performance efficiency of the always-
active scheme. As a result, it is observed that in some 
benchmarks our technique can hide almost all the 
performance degradation caused by a conventional Cache 
Decay [5] without affecting the energy efficiency. 

The rest of this paper is organized as follows: In Section 
2, we explain the experimental environment. Section 3 
analyzes the detail of sleep-miss behavior. Section 4 
proposes the always-active optimization and discusses its 
implementation alternatives. We then evaluate the 
performance-energy efficiency of the proposed method in 
Section 5. Section 6 shows related work. Finally, in Section 
7, we conclude this paper. 

2. Experimental Setup 
A cache simulator is developed to estimate the cache 

performance and energy. The processor configuration 
assumes an embedded processor, because the performance 
degradation is large when the leakage reduction technique 
is applied. More specifically, the embedded processor 
“Xscale” is assumed as shown in Table 1. Data L1 cache is 
scope of application of the leakage reduction technique. 
We use the SimpleScalar simulator tool set [13], and 
twelve of integer and fourteen of floating-point programs 
from the SPEC CPU 2000 benchmark set [14]. In the cache 
simulation, the first one billion instructions are skipped to 
make the execution stable, and the following 500 million 
instructions are used for the measurement. 

“Cache decay” is applied as the traditional leakage 
reduction technique. Cache decay is a famous technique to 
reduce leakage energy [5]. Although our technique can be 
applied to other non-state-preserving low-leakage caches, 
we use the Cache decay as the base model. In the Cache 
decay strategy, accesses to each cache line are monitored. 
If there are no accesses to a line during a given period, 
called decay interval, the cache predicts that the contents 

Table 1: Configuration of Processor 

Instruction issue In-Order 

Instruction decode width 2 instructions / clock cycle 

Instruction issue width 2 instructions / clock cycle 

Cache memory 
L1 data 
 
L1 instruction 
 

32KB (32B/entry, 32way, 
           1K entries) 
32KB (32B/entry, 32way, 
           1K entries) 

Hit latency 
L1 cache 
Main memory 

1 clock cycle 
32 clock cycles 

Memory bandwidth 8B 

Memory ports 1 

ITLB, DTLB 
Entry 
 
Miss penalty 

1M entries (4KB/entry, 32way, 
                    32 entries/way) 
30 clock cycles 

 

of the line are not expected to be reused. The supply 
voltage to the decayed lines is gated. In point of fact, decay 
interval is counted using hierarchical counter mechanism 
[5]. A global counter counts up to 1/4 decay interval with 
each cycle. Each line has local two-bit counter. When 
global counter is saturated, all local counters are 
incremented. If a two-bit counter reaches its maximum, a 
cache line transits to the sleep mode. A local counter is 
reset when the line is accessed. For the rest of this paper, 
we call a cache line in the sleep mode a sleep-line. 
Similarly, a line in the active mode is referred to as an 
active-line. In addition, decay interval is assumed 4K clock 
cycles. 

3. Analyzing Sleep-Line Access Behavior 
In order to achieve cache leakage reduction without 

hurting microprocessor performance, it is very important to 
employ an efficient mode transition control. If the cache 
attempts to transit aggressively into the sleep mode, large 
amount of leakage is reduced in turn. However, this 
scenario may affect negatively the microprocessor 
performance due to the occurrence of frequent sleep-miss. 
Therefore, we analyze Sleep-line accesses which increase 
the cache misses in this section. 

3.1 Performance Impact of Sleep-Line Access 
We have evaluated the impact of the sleep-miss on 

microprocessor performance. Figure 1 shows the program-
execution time in terms of clock cycles for Cache decay. 
These values are normalized by the execution time of 
conventional cache without low leakage technique. 
Increasing in the execution time for f179.art and i176.gcc is 



trivial. However, another benchmark programs make 
execution time longer. Performance overhead becomes 
32.1% in worst case. Thus, we believe that challenging the 
performance issue of low-leakage caches is worthwhile. 

Next, we represent the number of Data L1 cache misses 
in Figure 2. The y-axis shows the normalized DL1 misses 
by non-optimized conventional cache. If the value becomes 
one or more, it means sleep-miss which Cache decay 
caused. This figure tells us that performance degradation 
goes up in proportion to the number of sleep-miss. If we 
can cut back these misses, we will obtain an advantage of 
the performance improvement. 

3.2 Sleep-Miss Density 
In general, the memory references have spatial locality.  

Therefore, it is expected that there is spatial locality also in 
sleep-miss accesses. We refer to the frequency of sleep-
miss accesses to each cache line as sleep-miss density 
(SMD). The SMD of line i is defined as follows: 

)(

)(

avgmisssleep

ilinemisssleep
i N

N
SMD

−

−−=     (1) 

where Nsleep-miss(line-i) is the total number of sleep-miss 
accesses occurred at the cache line i, and Nsleep-miss(avg) is the 
average number of sleep-miss accesses for all cache lines. 
Namely, if the SMD value of a cache line is 2.0, it means 
that the line causes the double of sleep-miss accesses 
compared with the average. 

Based on the setup stated with section 2, we measured 
SMDi in each line. Figure 3 shows the SMD of each cache 
line for two benchmark programs. The x-axis shows the 
cache-line index in the assumed 32KB 32-way cache. For 
i181.mcf, many cache lines have the SMD value of around 
1.0. Actually, the SMD value of all line is smaller than 1.6. 
On the other hand, for f183.equake, we see that some cache 
lines indicate much higher degree of SMD. Figure 4 
presents the breakdown of cache lines in terms of the SMD. 
The five programs, f179.art, f188.ammp, i175.vpr, 
i197.parser and i256.bzip2 show the same characteristics 
with f183.equake. Namely, the SMD value of almost all the 
cache lines is less than 1.0, while that of a few lines (less 
than 10%) is equal to or greater than 4.0. Figure 5 reports 
the breakdown of sleep-miss accesses, that is, how much 
the sleep-miss accesses are dominated by the cache lines 
having different values of the SMD. For all benchmark 
programs, the cache lines indicating higher degree of SMD 
(equal or greater than 1.0) dominate the total sleep-miss 
accesses. 

From the observations explained above, we can consider 
that in many cases a small number of cache lines are 
responsible for the majority of sleep-miss accesses. For 
instance, in f183.equale, the cache lines with SMD≥4.0 are 
only 7.7%, but they account for 75.2% of sleep-miss 
accesses. On average for all benchmarks, 2.6% of cache 
lines have SMD≥4.0, and they cause 25.2% of total sleep-
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Figure 1: Normalized Execution Time of Cache decay
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miss accesses. Furthermore, if we focus on the range of 
SMD>1.0, 55.7% of sleep-miss accesses are caused by 
24.5% of cache lines. 

4. Supporting Always-Active Mode 

4.1 Run-Time Operation-Mode Optimization 
Each cache line operates as depicted in Figure 6. In the 

case of Cache decay, the line transits to the sleep mode at 
the end of every decay interval, and enters into the active 
mode when it is accessed. Correspondingly, the state of an 
"always-active mode" is added in the method which we 
propose. This mode prohibits a cache line to transit to the 
sleep mode. More specifically, even if no-access time goes 
through decay-interval, it does not change to sleep-mode. 
A cache line operating in the always-active mode is 
referred to as an always-active line. By assigning the 
cache lines which causes frequently the sleep-miss accesses 
to the always-active mode, we can alleviate the negative 
impact of performance. Not only that, we can also reduce 
the reference energy to a low level memory. 

How many cache lines should be assigned to the always-
active mode are most important considerations. Although 
increasing the number of always-active lines improves the 
performance, the energy efficiency may be degraded. On 

the other hand, the lack of the always-active lines may not 
be able to compensate for the negative performance impact 
caused by the sleep-miss. For this design alternative, we 
exploit the value of SMD. If a cache line indicates the value 
of SMD exceeding a given threshold, the line is considered 
to be responsible for the majority of sleep-miss accesses. 
Therefore, that line is assigned to the always-active mode. 
Otherwise, the line is managed as active mode. Concretely 
speaking, only if one of the following equations is 
approved, the operation mode of that line is transited to 
always-active mode. 

ThresholdSMD i >     (2) 

where Threshold is a given parameter in order to resolve  
always-active line. We substitute the equation (1) to (2). 

Threshold
N

N

avgmisssleep

ilinemisssleep >
−

−−

)(

)(    (3) 

This equation shows that it is necessary to get Nsleep-miss(avg) 
and Nsleep-miss(line-i), in order to realize always-active mode. 

4.2 Hardware Implementation 
In this section, we consider the implementation for 

supporting the always-active mode. The cache which 
supports always active mode is presented in Figure 7. This 
cache assumes 1 way and 1024 lines. The domain 
surrounded with the broken line is cache decay. The cache 
decay has 1-bit decay flag which indicates operating state, 
2-bit local counter for each cache line, and one global 
counter The local counter is incremented when the global 
counter exceeds 1/4 decay interval clock cycles. And, the 
decay flag is set to one if the local counter is saturated, i.e., 
the supply voltage provided to the associated line is gated. 
If sleep-line is referred, the corresponding decay flag is 
reset, in order to change it to active-line. 

On the other hand, the SMDi value of each line needs to 
be calculated in order to determine always-active line 
dynamically during program execution. Formula (3) is 
rewritten as follows: 
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Figure 4: Breakdown of Lines in terms of SMD 
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)()( avgmisssleepilinemisssleep NThresholdN −−− ×>  (4) 

=× − )(avgmisssleepNThreshold   

                                   bitshifttotalmisssleep NN −− >>)(  (5) 

)(log)(log 22 ThresholdNN linebitshift −=−   (6) 

where Nsleep-miss(total) is the total number of sleep-miss, Nshift-

bit is the bit count which should be shifted, and Nline is the 
number of lines in the L1 data cache. Nline and Threshold 
are already determined at the time of a layout. Namely, if 
we assume Nline is 1024 (=210) and Threshold is 2 (=21), 
Nshift-bit is 9. Therefore, only the counter for Nsleep-miss(line-i), 
and Nsleep-miss(total), and shifter are required in order to 
implement always-active mode. Other circuits are not 
required any modification from the conventional cache 
decay. Concretely speaking, 1-bit flag (called always-
active flag), 20-bit counter (called sleep-miss counter), a 
shifter, and total sleep-miss counter is needed. 

Although not only a data but a tag is transited to sleep 
mode in conventional Cache decay, only a data is transited 
to sleep mode in always-active method. If the line hit to the 
tag is sleep-line, it will be judged that sleep-miss occurred. 
When a sleep-miss occurs, corresponding sleep-miss 
counter and total sleep-miss counter count up. Moreover, 
expression (4) is judged. If the sleep-miss counter is larger, 
the line is changed to always-active line because it caused 
performance degradation. In contrast to this, the line 
transits to the decay mode if the number of sleep-miss 
counter is smaller. 

If the always-active flag is set to one, the associated 
cache line ignores the current status of the decay flag and 
operates in the active mode. In other words, the always-
active flag masks the decay flag. 

4.3 Energy Model 
We define the energy model which varies with the 

leakage reduction technique, as follows: 

memorymainLLtotal DEDELEE _11 ++=   (7) 

where LEL1, DEL1, and DEmain_memory are respectively, the 
leakage energy, the dynamic energy consumed in the data 
L1 cache, and the dynamic energy consumed with 
reference for main memory. 

LEL1 is given by the following equation: 

∑
=

×=
CC

j
jactivebitL NLELE

0
)(1 )(    (8) 

where CC is the program execution time in terms of clock 
cycles, LEbit is the average leakage energy in one SRAM 
cell consumed per clock cycle, and Nactive(j) is the total 
number of bits which is operating active mode at j clock 
cycle. As active-line increases, Nactive(j) increases, while CC 
decreases. 

Next, we focus on DEL1. This energy can be categorized 
into 3 parts. The first is the energy consumed in the non-
optimized conventional cache. The second is consumption 
energy of addition circuit for cache decay. The third is the 
energy of additional circuit required for implementation of 
always-active mode. Therefore, DEL1 is expressed as 
follows: 

aadecayorgL DEDEDEDE ++=1    (9) 

Without applying the low-leakage technique, DEorg is 
constant. DEdecay depends on the CC, because global 
counter is incremented with each clock cycle. DEaa 
increases in proportion to the number of sleep-miss. 

Finally, DEmain_memory is given by the average energy per 
access to main memory DEmm/access and the total number of 
main memory reference Nmm_access, as follows: 

accessmmaccessmmmemorymain NDEDE _/_ ×=   (10) 

Always-active mode allows the reduction of Nmm_access. 
To evaluate Etotal, five parameters (DEorg/access, DEaa/access, 

DEmm/access, DEdecay/access, and LEbit) are assumed as follows: 
• DEorg/access is the average dynamic energy per access 

to the conventional cache. To measure this, we use 
simulator CACTI 3.0 which computes cache access 
time and energy [1]. As a result of measuring, 
DEorg/access = 1.90 nJ. At this time, the CMOS 
technology is assumed as 0.07μm. 

• DEaa/access is dynamic energy per access to sleep-miss 
counter. 4.20 pJ is obtained by the approximation 
using DEorg/acces and the ratio of active bit counts per 
reference. 

• DEmm/access is dynamic energy per access to main 
memory. This parameter is defined as “k*DEorg/access”. 
We have investigated the “k” with various number, 5, 
10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. Because it 
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cannot be discussed here for lack of space, it is 
assumed that k = 20 in this paper. 

• DEdecay/access is determined based on the design 
reports in [5]. The energy of 2 bit local counter is 0.1 
pJ per access. In addition, it is assumed that decay 
interval is 4K clock cycle. Therefore, global counter 
needs 10 bits. In consequence, the energy of global 
counter is 0.5 pJ. 

• LEbit is decided in accordance with [2]. This paper 
reports the value of DEorg/access and LEbit. After 
considering these values and cache configuration, 
LEbit is 0.13 pJ. 

5. Evaluation 
In this section, we evaluate the energy-performance 

efficiency of the always-active low-leakage cache. The 
following caches are compared for the evaluation. 

• Cache decay: a conventional cache decay 

• AA1/2/4: a cache decay supporting the always-active 
mode. The number following to the string “AA” is 
the SMD threshold. This threshold means 
“Threshold” which is the variable of the expression 
(2). For instance, in AA4, the cache lines whose 
SMD value is equal to or greater than 4 are assigned 
to the always-active mode. 

5.1 Performance Improvement 
We have measured the program-execution time in terms 

of clock cycles for both the conventional cache decay and 
proposed always-active caches. Figure 8 shows the 
simulation results. Each execution time is normalized by 
the conventional cache which does not support any leakage 
reduction technique. For eight benchmarks, f177.mesa, 
f183.equake, f188.ammp, i164.gzip, i175.vpr, i181.mcf, 
i197.parser, and i256.bzip2, the proposed approach 
effectively compensates for the performance overhead 

caused by the cache decay. On the other hand, for f179.art 
and i176.gcc, the original decay approach can maintain the 
performance of non-optimized conventional cache. Even in 
such a case, the always-active scheme does not give any 
negative impact on the performance. On average, AA1, 
AA2, and AA4 reduce the performance overhead from 
12.8% caused by the cache decay to 3.8%, 6.7%, and 8.4%, 
respectively. 

5.2 Energy Reduction 
We have measured the cache energy based on the energy 

model explained in Section 4.3. Figure 9 shows the 
normalized energy by non-optimized conventional cache. 
All the benchmarks used, except f177.mesa, achieve almost 
the same energy reduction rates as the cache decay. In the 
best case, f183.equake, our approach cut the energy 20% 
rather than cache decay. In f177.mesa, always-active 
technique also reduces the energy rather than cache decay. 
However, the energy overhead to non-optimized 
conventional cache is expensive. 

5.3 Discussions 
Based on the simulation results reported in Section 5.1 

and 5.2, we discuss the energy-performance efficiency of 
the always-active approach. We can categorize the 
evaluation results into four cases. 

In the first case, the always-active approach achieves 
high-performance and low-energy consumption, i.e., the 
cache reduces both energy and execution time rather than 
cache decay approach. For f183.equake, and i175.vpr 
belong to this category. Furthermore, although we see a 
small impact on the energy efficiency, large performance 
improvements can be achieved for some benchmarks, e.g., 
i197.parser. Figure 10, 11, and 12 depict the breakdown of 
dissipation energy of non-optimized cache, cache decay, 
and AA1, respectively. This category’s benchmarks have 
the same characteristics. As compared with the 
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conventional cache, DEmain_memory increases and LEL1 
decreases with application of always-active technique. 
However, these benchmark programs have the very high 
reduction effect of DEmain_memory as compared with cache 
decay. In f183.equake, always-active technique increased 
LEL1 84.8 mJ compared with cache decay, but, it reduced 
DEmain_memory 258 mJ. At this time, the performance has 
improved 14.5%. Additionally, only a small number of 
cache lines indicate higher values of the SMD and are 
responsible for the majority of sleep-miss accesses. For 
these applications, supporting the always-active mode is 
very effective. 

The second case, the proposed cache aggressively reduces 
the sleep-miss penalty by sacrificing the energy efficiency. 
For f188.ammp, i164.gzip, i181.mcf, and i256.bzip2 show 
clearly this characteristic. This is because a number of 
cache lines in these benchmarks are allocated to the 
always-active mode. For i164.gzip, a number of cache lines 
have the SMD value less than 2 as shown figure 5. This 
situations increase the number of always-active lines, 

resulting in the similar effects with the non-optimized 
conventional cache. Since the influence of LEL1 increase 
is larger than the DE reduction effect, as compared with 
Cache decay, energy consumption of always-active is large. 

In the third case, improves neither performance nor 
energy of the conventional cache decay. For instance, 
f179.art and i176.gcc fall under this category. As can be 
understood from figure 1, there are no performance 
degradation with cache decay, i.e. there is extremely little 
sleep-miss. These situations strongly restrict the number of 
the always-active lines, thus the proposed approach does 
not provide any advantages over the conventional cache 
decay. 

From what has been said above, I have come to the 
conclusion that the profits of always-active are decided by 
the trade-off between the DEmain_memory reduction effect and 
the increase in LEL1. Therefore, always-active technique 
has the ability to acquire the energy reduction and the high 
performance improvement by performing suitable line 
selection. 

5.4 Effect of Decay Interval 
The always-active method improves the execution time 

by reduction of sleep-misses. In order to reduce sleep-miss 
in cache decay, it is only necessary to lengthen the decay 
interval. Therefore, the execution time and energy at the 
time of setting decay interval to 4K, 8K, 64K, and 512K 
clock cycle are measured. Figure 13 shows the normalized 
execution time and normalized energy of AA1 and cache 
decay. Benchmark program is f183.equake. In the case of 
512K decay interval, the energy reduction effect is not 
obtained, because the period until it changes to sleep-mode 
is too long. Correspondingly, if suitable decay interval is 
set, cache decay can reduce energy, without performance 
degradation. In f183.equake, 64K decay interval is the most 
appropriate. However, it is known that optimal decay 
interval differs for every program [10]. On the other hand, 
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Figure 11: Breakdown of Energy for Cache Decay 
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except for 512K decay interval, always-active method 
constantly reduces energy consumption and is also 
suppressing the increase of execution time. 

6. Conclusions 
During our investigations of cache decay behavior, there 

is a spatial locality of accesses to the turning-off lines. 
Based on this observation, we have proposed to support the 
always-active mode in order to achieve high-performance, 
low-leakage caches. In our approach, cache lines which 
caused the performance degradation are forced to stay in 
the high-speed but high-leakage mode. 

We have evaluated the energy-performance efficiency of 
the proposed method. As a result, it has been observed that 
our approach can eliminate almost the performance 
overhead, while maintaining the energy reduction 
efficiency, compared with the conventional cache decay. 
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