
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Performance Optimization for Low-Leakage Caches
based on Sleep-Line Access Density

Komiya, Reiko
Department of Electronics Engineering and Computer Science, Fukuoka University

Inoue, Koji
PRESTO, Japan Science and Technology Agency

Murakami, Kazuaki
Institute of Systems & Information Technologies/KYUSHU | Department of Informatics, Kyushu
University

https://hdl.handle.net/2324/11885

出版情報：Workshop on Optimizations for DSP and Embedded Systems. 4, 2006-03-26
バージョン：
権利関係：

Performance Optimization for Low-Leakage Caches
based on Sleep-Line Access Density

Reiko Komiya†1, †2 Koji Inoue†3, †4 Kazuaki Murakami†2, †3

†1 Department of Electronics Engineering and Computer Science, Fukuoka University
†2 Institute of Systems & Information Technologies/KYUSHU

†3 Department of Informatics, Kyushu University
†4 PRESTO, Japan Science and Technology Agency

arch-ccc-lpc”at”c.csce.kyushu-u.ac.jp

ABSTRACT
As the transistor feature sizes and threshold voltages reduce,
leakage energy consumption has become an inevitable issue for
high-performance microprocessor designs. In order to solve the
energy issue, a number of techniques to reduce the cache leakage
energy have so far been proposed. However, the low-leakage
caches affect negatively the processor performance due to the
accesses to non-state-preserving sleep-mode lines. In this paper,
we analyze the access behavior on a low-leakage cache and show
a remarkable observation for the density of sleep-line accesses.
Based on this observation, we propose a new cache management
technique to alleviate the performance degradation caused by
low-leakage caches. In our approach, a small number of cache
lines which are frequently accessed in the sleep mode are forced
to stay in always-active mode. Although this mode is high leakage,
it saves the state. Thus, the performance overhead caused by the
leakage optimization can be eliminated.

Keywords
High performance, Low leakage, Cache

1. INTRODUCTION
Due to the popularization of battery operated devices

such as laptop and hand-held computers, energy
consumption has become a key constraint in
microprocessor designs. The energy dissipated in CMOS
circuits consists of two parts: dynamic energy and static (or
leakage) energy. The dynamic energy is consumed by
charging and discharging load capacitances in circuits,
while the leakage energy is wasted by leakage current in
non-ideal transistor operations, i.e., incomplete turning off.
With the increasing number of transistors employed in a
chip and the continuing reduction in threshold voltages of
these transistors, leakage energy has become a major
concern. Especially, reducing the leakage in on-chip caches
is essential, because of a tendency that a significant portion
of transistor budget in microprocessors is invested to on-
chip memories. For example, in the case of a 0.07μm

process technology, it has been estimated that leakage
energy accounts for 70% of total cache energy [5].

To challenge the leakage issue, a number of researchers
have proposed efficient leakage reduction techniques
([2]~[4], [5]~[12], [15] [16]). To reduce the cache leakage,
it is required to support at least two operation modes; a
conventional high-leakage mode (or active mode) and an
optimized low-leakage mode (or sleep mode). Furthermore,
there are two options to implement the sleep mode; non-
state-preserving and state-preserving. The former gates the
supply voltage to SRAM cells, thus large amount of
leakage is reduced, but performance is negatively affected
due to losing the data in the SRAM cells [5][11]. While the
latter can be implemented by optimizing the supply voltage
as DVS ([2][7]) or the transistor threshold voltage as VT-
CMOS [3]. This approach can maintain the cache-hit rates
of non-optimized conventional caches. In state-preserving,
the sleeping line needs to be transited to the active mode
before the SRAM access is started. It can alleviate the
performance impact, but leakage reduction is not as high as
the non-state-preserving scheme. With the advances of
VLSI technology, changing the supply voltage at run time
may become harder and harder due to the effects of wire
delay, Vdd noise, and so on. Furthermore, the speed of
microprocessors tends to be increased. As the results, it
becomes difficult to materialize low supply voltage which
does not destroy for state-preserving. In addition, the
reference [9] reports that the state-preserving scheme is
weak to the soft error. Therefore, we expect that the non-
state-preserving approach becomes mainstream, and focus
on this approach in this paper.

The non-state-preserving approach stops the supply
voltage of corresponding line and ruins the data. Thus, a
miss is surely made in the reference to a sleep mode line. If
the data referred to again is lost, the number of miss
increases as compared with the conventional cache which
does not use the leakage reduction technique. It causes the

performance degradation of the processor. We call this
miss “Sleep-miss”. In in-order execution, sleep-miss
inflicts heavy damage on the processor performance,
because the next instruction cannot be executed. In our
evaluation, we have noticed that it has been observed that
in the worst case, the processor performance is degraded by
37%.

To solve the performance problem in low-leakage caches,
in this paper, we propose a new cache management
technique. First, we analyze the characteristics of access
behavior on a low-leakage L1 data cache and show that
some cache lines have extremely high degree of sleep-miss
density, i.e., a small number of lines are responsible for the
majority of sleep-miss. Based on this observation, we
propose a new operation mode, called always-active mode.
In our approach, the cache lines which cause frequently the
sleep-misses are forced to stay in the active mode. We then
evaluate the energy-performance efficiency of the always-
active scheme. As a result, it is observed that in some
benchmarks our technique can hide almost all the
performance degradation caused by a conventional Cache
Decay [5] without affecting the energy efficiency.

The rest of this paper is organized as follows: In Section
2, we explain the experimental environment. Section 3
analyzes the detail of sleep-miss behavior. Section 4
proposes the always-active optimization and discusses its
implementation alternatives. We then evaluate the
performance-energy efficiency of the proposed method in
Section 5. Section 6 shows related work. Finally, in Section
7, we conclude this paper.

2. Experimental Setup
A cache simulator is developed to estimate the cache

performance and energy. The processor configuration
assumes an embedded processor, because the performance
degradation is large when the leakage reduction technique
is applied. More specifically, the embedded processor
“Xscale” is assumed as shown in Table 1. Data L1 cache is
scope of application of the leakage reduction technique.
We use the SimpleScalar simulator tool set [13], and
twelve of integer and fourteen of floating-point programs
from the SPEC CPU 2000 benchmark set [14]. In the cache
simulation, the first one billion instructions are skipped to
make the execution stable, and the following 500 million
instructions are used for the measurement.

“Cache decay” is applied as the traditional leakage
reduction technique. Cache decay is a famous technique to
reduce leakage energy [5]. Although our technique can be
applied to other non-state-preserving low-leakage caches,
we use the Cache decay as the base model. In the Cache
decay strategy, accesses to each cache line are monitored.
If there are no accesses to a line during a given period,
called decay interval, the cache predicts that the contents

Table 1: Configuration of Processor

Instruction issue In-Order

Instruction decode width 2 instructions / clock cycle

Instruction issue width 2 instructions / clock cycle

Cache memory
L1 data

L1 instruction

32KB (32B/entry, 32way,
 1K entries)
32KB (32B/entry, 32way,
 1K entries)

Hit latency
L1 cache
Main memory

1 clock cycle
32 clock cycles

Memory bandwidth 8B

Memory ports 1

ITLB, DTLB
Entry

Miss penalty

1M entries (4KB/entry, 32way,
 32 entries/way)
30 clock cycles

of the line are not expected to be reused. The supply
voltage to the decayed lines is gated. In point of fact, decay
interval is counted using hierarchical counter mechanism
[5]. A global counter counts up to 1/4 decay interval with
each cycle. Each line has local two-bit counter. When
global counter is saturated, all local counters are
incremented. If a two-bit counter reaches its maximum, a
cache line transits to the sleep mode. A local counter is
reset when the line is accessed. For the rest of this paper,
we call a cache line in the sleep mode a sleep-line.
Similarly, a line in the active mode is referred to as an
active-line. In addition, decay interval is assumed 4K clock
cycles.

3. Analyzing Sleep-Line Access Behavior
In order to achieve cache leakage reduction without

hurting microprocessor performance, it is very important to
employ an efficient mode transition control. If the cache
attempts to transit aggressively into the sleep mode, large
amount of leakage is reduced in turn. However, this
scenario may affect negatively the microprocessor
performance due to the occurrence of frequent sleep-miss.
Therefore, we analyze Sleep-line accesses which increase
the cache misses in this section.

3.1 Performance Impact of Sleep-Line Access
We have evaluated the impact of the sleep-miss on

microprocessor performance. Figure 1 shows the program-
execution time in terms of clock cycles for Cache decay.
These values are normalized by the execution time of
conventional cache without low leakage technique.
Increasing in the execution time for f179.art and i176.gcc is

trivial. However, another benchmark programs make
execution time longer. Performance overhead becomes
32.1% in worst case. Thus, we believe that challenging the
performance issue of low-leakage caches is worthwhile.

Next, we represent the number of Data L1 cache misses
in Figure 2. The y-axis shows the normalized DL1 misses
by non-optimized conventional cache. If the value becomes
one or more, it means sleep-miss which Cache decay
caused. This figure tells us that performance degradation
goes up in proportion to the number of sleep-miss. If we
can cut back these misses, we will obtain an advantage of
the performance improvement.

3.2 Sleep-Miss Density
In general, the memory references have spatial locality.

Therefore, it is expected that there is spatial locality also in
sleep-miss accesses. We refer to the frequency of sleep-
miss accesses to each cache line as sleep-miss density
(SMD). The SMD of line i is defined as follows:

)(

)(

avgmisssleep

ilinemisssleep
i N

N
SMD

−

−−= (1)

where Nsleep-miss(line-i) is the total number of sleep-miss
accesses occurred at the cache line i, and Nsleep-miss(avg) is the
average number of sleep-miss accesses for all cache lines.
Namely, if the SMD value of a cache line is 2.0, it means
that the line causes the double of sleep-miss accesses
compared with the average.

Based on the setup stated with section 2, we measured
SMDi in each line. Figure 3 shows the SMD of each cache
line for two benchmark programs. The x-axis shows the
cache-line index in the assumed 32KB 32-way cache. For
i181.mcf, many cache lines have the SMD value of around
1.0. Actually, the SMD value of all line is smaller than 1.6.
On the other hand, for f183.equake, we see that some cache
lines indicate much higher degree of SMD. Figure 4
presents the breakdown of cache lines in terms of the SMD.
The five programs, f179.art, f188.ammp, i175.vpr,
i197.parser and i256.bzip2 show the same characteristics
with f183.equake. Namely, the SMD value of almost all the
cache lines is less than 1.0, while that of a few lines (less
than 10%) is equal to or greater than 4.0. Figure 5 reports
the breakdown of sleep-miss accesses, that is, how much
the sleep-miss accesses are dominated by the cache lines
having different values of the SMD. For all benchmark
programs, the cache lines indicating higher degree of SMD
(equal or greater than 1.0) dominate the total sleep-miss
accesses.

From the observations explained above, we can consider
that in many cases a small number of cache lines are
responsible for the majority of sleep-miss accesses. For
instance, in f183.equale, the cache lines with SMD≥4.0 are
only 7.7%, but they account for 75.2% of sleep-miss
accesses. On average for all benchmarks, 2.6% of cache
lines have SMD≥4.0, and they cause 25.2% of total sleep-

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35
f1

77
.m

es
a

f1
79

.a
rt

f1
83

.e
qu

ak
e

f1
88

.a
m

m
p

i1
64

.g
zi

p

i1
75

.v
pr

i1
76

.g
cc

i1
81

.m
cf

i1
97

.p
ar

se
r

i2
56

.b
zi

p2

A
ve

ra
ge

Benchmark Programs

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Figure 1: Normalized Execution Time of Cache decay

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

f1
77

.m
es

a

f1
79

.a
rt

f1
83

.e
qu

ak
e

f1
88

.a
m

m
p

i1
64

.g
zi

p

i1
75

.v
pr

i1
76

.g
cc

i1
81

.m
cf

i1
97

.p
ar

se
r

i2
56

.b
zi

p2

A
ve

ra
ge

Benchmark Programs

N
or

m
al

iz
ed

 D
L1

 m
is

se
s

11.7

Figure 2: Normalized DL1 Misses

Sl
ee

p-
M

is
s D

en
si

ty

f183.equake16

14

12

10

8

6

4
2

i181.mcf

0 200 800 1000

1.0

0.4
400 600

0.6

0.8

1.2

1.4
1.6

18

0

Cache-Line index (from 0 to 1023)

Figure 3: Sleep-miss Density (f183.equake, i181.mcf)

miss accesses. Furthermore, if we focus on the range of
SMD>1.0, 55.7% of sleep-miss accesses are caused by
24.5% of cache lines.

4. Supporting Always-Active Mode

4.1 Run-Time Operation-Mode Optimization
Each cache line operates as depicted in Figure 6. In the

case of Cache decay, the line transits to the sleep mode at
the end of every decay interval, and enters into the active
mode when it is accessed. Correspondingly, the state of an
"always-active mode" is added in the method which we
propose. This mode prohibits a cache line to transit to the
sleep mode. More specifically, even if no-access time goes
through decay-interval, it does not change to sleep-mode.
A cache line operating in the always-active mode is
referred to as an always-active line. By assigning the
cache lines which causes frequently the sleep-miss accesses
to the always-active mode, we can alleviate the negative
impact of performance. Not only that, we can also reduce
the reference energy to a low level memory.

How many cache lines should be assigned to the always-
active mode are most important considerations. Although
increasing the number of always-active lines improves the
performance, the energy efficiency may be degraded. On

the other hand, the lack of the always-active lines may not
be able to compensate for the negative performance impact
caused by the sleep-miss. For this design alternative, we
exploit the value of SMD. If a cache line indicates the value
of SMD exceeding a given threshold, the line is considered
to be responsible for the majority of sleep-miss accesses.
Therefore, that line is assigned to the always-active mode.
Otherwise, the line is managed as active mode. Concretely
speaking, only if one of the following equations is
approved, the operation mode of that line is transited to
always-active mode.

ThresholdSMD i > (2)

where Threshold is a given parameter in order to resolve
always-active line. We substitute the equation (1) to (2).

Threshold
N

N

avgmisssleep

ilinemisssleep >
−

−−

)(

)((3)

This equation shows that it is necessary to get Nsleep-miss(avg)
and Nsleep-miss(line-i), in order to realize always-active mode.

4.2 Hardware Implementation
In this section, we consider the implementation for

supporting the always-active mode. The cache which
supports always active mode is presented in Figure 7. This
cache assumes 1 way and 1024 lines. The domain
surrounded with the broken line is cache decay. The cache
decay has 1-bit decay flag which indicates operating state,
2-bit local counter for each cache line, and one global
counter The local counter is incremented when the global
counter exceeds 1/4 decay interval clock cycles. And, the
decay flag is set to one if the local counter is saturated, i.e.,
the supply voltage provided to the associated line is gated.
If sleep-line is referred, the corresponding decay flag is
reset, in order to change it to active-line.

On the other hand, the SMDi value of each line needs to
be calculated in order to determine always-active line
dynamically during program execution. Formula (3) is
rewritten as follows:

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

f1
77

.m
es

a

f1
79

.a
rt

f1
83

.e
qu

ak
e

f1
88

.a
m

m
p

i1
64

.g
zi

p

i1
75

.v
pr

i1
76

.g
cc

i1
81

.m
cf

i1
97

.p
ar

se
r

i2
56

.b
zi

p2

A
ve

ra
ge

Benchmark Programs

4<=SMD 2<=SMD<4 1<=SMD<2 SMD<1

Figure 4: Breakdown of Lines in terms of SMD

0%

20%

40%

60%

80%

100%

f1
77

.m
es

a

f1
79

.a
rt

f1
83

.e
qu

ak
e

f1
88

.a
m

m
p

i1
64

.g
zi

p

i1
75

.v
pr

i1
76

.g
cc

i1
81

.m
cf

i1
97

.p
ar

se
r

i2
56

.b
zi

p2

A
ve

ra
ge

Benchmark Programs

4<=SMD 2<=SMD<4 1<=SMD<2 SMD<1

Figure 5: Breakdown of Sleep-Miss Accesses

SMD > ThresholdSMD <= Threshold

active
mode

sleep
mode

no-access time >= decay interval

access

always-active
mode

initial state

Figure 6: State Diagram for Operation Mode

)()(avgmisssleepilinemisssleep NThresholdN −−− ×> (4)

=× −)(avgmisssleepNThreshold

 bitshifttotalmisssleep NN −− >>)((5)

)(log)(log 22 ThresholdNN linebitshift −=− (6)

where Nsleep-miss(total) is the total number of sleep-miss, Nshift-

bit is the bit count which should be shifted, and Nline is the
number of lines in the L1 data cache. Nline and Threshold
are already determined at the time of a layout. Namely, if
we assume Nline is 1024 (=210) and Threshold is 2 (=21),
Nshift-bit is 9. Therefore, only the counter for Nsleep-miss(line-i),
and Nsleep-miss(total), and shifter are required in order to
implement always-active mode. Other circuits are not
required any modification from the conventional cache
decay. Concretely speaking, 1-bit flag (called always-
active flag), 20-bit counter (called sleep-miss counter), a
shifter, and total sleep-miss counter is needed.

Although not only a data but a tag is transited to sleep
mode in conventional Cache decay, only a data is transited
to sleep mode in always-active method. If the line hit to the
tag is sleep-line, it will be judged that sleep-miss occurred.
When a sleep-miss occurs, corresponding sleep-miss
counter and total sleep-miss counter count up. Moreover,
expression (4) is judged. If the sleep-miss counter is larger,
the line is changed to always-active line because it caused
performance degradation. In contrast to this, the line
transits to the decay mode if the number of sleep-miss
counter is smaller.

If the always-active flag is set to one, the associated
cache line ignores the current status of the decay flag and
operates in the active mode. In other words, the always-
active flag masks the decay flag.

4.3 Energy Model
We define the energy model which varies with the

leakage reduction technique, as follows:

memorymainLLtotal DEDELEE _11 ++= (7)

where LEL1, DEL1, and DEmain_memory are respectively, the
leakage energy, the dynamic energy consumed in the data
L1 cache, and the dynamic energy consumed with
reference for main memory.

LEL1 is given by the following equation:

∑
=

×=
CC

j
jactivebitL NLELE

0
)(1)((8)

where CC is the program execution time in terms of clock
cycles, LEbit is the average leakage energy in one SRAM
cell consumed per clock cycle, and Nactive(j) is the total
number of bits which is operating active mode at j clock
cycle. As active-line increases, Nactive(j) increases, while CC
decreases.

Next, we focus on DEL1. This energy can be categorized
into 3 parts. The first is the energy consumed in the non-
optimized conventional cache. The second is consumption
energy of addition circuit for cache decay. The third is the
energy of additional circuit required for implementation of
always-active mode. Therefore, DEL1 is expressed as
follows:

aadecayorgL DEDEDEDE ++=1 (9)

Without applying the low-leakage technique, DEorg is
constant. DEdecay depends on the CC, because global
counter is incremented with each clock cycle. DEaa
increases in proportion to the number of sleep-miss.

Finally, DEmain_memory is given by the average energy per
access to main memory DEmm/access and the total number of
main memory reference Nmm_access, as follows:

accessmmaccessmmmemorymain NDEDE _/_ ×= (10)

Always-active mode allows the reduction of Nmm_access.
To evaluate Etotal, five parameters (DEorg/access, DEaa/access,

DEmm/access, DEdecay/access, and LEbit) are assumed as follows:
• DEorg/access is the average dynamic energy per access

to the conventional cache. To measure this, we use
simulator CACTI 3.0 which computes cache access
time and energy [1]. As a result of measuring,
DEorg/access = 1.90 nJ. At this time, the CMOS
technology is assumed as 0.07μm.

• DEaa/access is dynamic energy per access to sleep-miss
counter. 4.20 pJ is obtained by the approximation
using DEorg/acces and the ratio of active bit counts per
reference.

• DEmm/access is dynamic energy per access to main
memory. This parameter is defined as “k*DEorg/access”.
We have investigated the “k” with various number, 5,
10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. Because it

sleep-miss counter
always-active flag

1023

0
1
2

Decay flag
2 bit local counter

tag data

V
ol

ta
ge

 C
on

tro
l gated

Vdd / 0

total sleep-miss counter 1/4 decay interval

>?
>

shifter

global counter
=?

Figure 7: Supporting Always-Active Mode

cannot be discussed here for lack of space, it is
assumed that k = 20 in this paper.

• DEdecay/access is determined based on the design
reports in [5]. The energy of 2 bit local counter is 0.1
pJ per access. In addition, it is assumed that decay
interval is 4K clock cycle. Therefore, global counter
needs 10 bits. In consequence, the energy of global
counter is 0.5 pJ.

• LEbit is decided in accordance with [2]. This paper
reports the value of DEorg/access and LEbit. After
considering these values and cache configuration,
LEbit is 0.13 pJ.

5. Evaluation
In this section, we evaluate the energy-performance

efficiency of the always-active low-leakage cache. The
following caches are compared for the evaluation.

• Cache decay: a conventional cache decay

• AA1/2/4: a cache decay supporting the always-active
mode. The number following to the string “AA” is
the SMD threshold. This threshold means
“Threshold” which is the variable of the expression
(2). For instance, in AA4, the cache lines whose
SMD value is equal to or greater than 4 are assigned
to the always-active mode.

5.1 Performance Improvement
We have measured the program-execution time in terms

of clock cycles for both the conventional cache decay and
proposed always-active caches. Figure 8 shows the
simulation results. Each execution time is normalized by
the conventional cache which does not support any leakage
reduction technique. For eight benchmarks, f177.mesa,
f183.equake, f188.ammp, i164.gzip, i175.vpr, i181.mcf,
i197.parser, and i256.bzip2, the proposed approach
effectively compensates for the performance overhead

caused by the cache decay. On the other hand, for f179.art
and i176.gcc, the original decay approach can maintain the
performance of non-optimized conventional cache. Even in
such a case, the always-active scheme does not give any
negative impact on the performance. On average, AA1,
AA2, and AA4 reduce the performance overhead from
12.8% caused by the cache decay to 3.8%, 6.7%, and 8.4%,
respectively.

5.2 Energy Reduction
We have measured the cache energy based on the energy

model explained in Section 4.3. Figure 9 shows the
normalized energy by non-optimized conventional cache.
All the benchmarks used, except f177.mesa, achieve almost
the same energy reduction rates as the cache decay. In the
best case, f183.equake, our approach cut the energy 20%
rather than cache decay. In f177.mesa, always-active
technique also reduces the energy rather than cache decay.
However, the energy overhead to non-optimized
conventional cache is expensive.

5.3 Discussions
Based on the simulation results reported in Section 5.1

and 5.2, we discuss the energy-performance efficiency of
the always-active approach. We can categorize the
evaluation results into four cases.

In the first case, the always-active approach achieves
high-performance and low-energy consumption, i.e., the
cache reduces both energy and execution time rather than
cache decay approach. For f183.equake, and i175.vpr
belong to this category. Furthermore, although we see a
small impact on the energy efficiency, large performance
improvements can be achieved for some benchmarks, e.g.,
i197.parser. Figure 10, 11, and 12 depict the breakdown of
dissipation energy of non-optimized cache, cache decay,
and AA1, respectively. This category’s benchmarks have
the same characteristics. As compared with the

0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35

f1
77

.m
es

a

f1
79

.a
rt

f1
83

.e
qu

ak
e

f1
88

.a
m

m
p

i1
64

.g
zi

p

i1
75

.v
pr

i1
76

.g
cc

i1
81

.m
cf

i1
97

.p
ar

se
r

i2
56

.b
zi

p2

A
ve

ra
ge

Benchmark Programs

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

AA1 AA2 AA4 Cache decay

Figure 8: Normalized Execution Time of AA

0.00
0.20

0.40
0.60

0.80
1.00

1.20
1.40

1.60

f1
77

.m
es

a

f1
79

.a
rt

f1
83

.e
qu

ak
e

f1
88

.a
m

m
p

i1
64

.g
zi

p

i1
75

.v
pr

i1
76

.g
cc

i1
81

.m
cf

i1
97

.p
ar

se
r

i2
56

.b
zi

p2

A
ve

ra
ge

Benchmark Programs

N
or

m
al

iz
ed

 e
ne

rg
y

AA1 AA2 AA4 Cache decay

Figure 9: Normalized Energy of AA

conventional cache, DEmain_memory increases and LEL1
decreases with application of always-active technique.
However, these benchmark programs have the very high
reduction effect of DEmain_memory as compared with cache
decay. In f183.equake, always-active technique increased
LEL1 84.8 mJ compared with cache decay, but, it reduced
DEmain_memory 258 mJ. At this time, the performance has
improved 14.5%. Additionally, only a small number of
cache lines indicate higher values of the SMD and are
responsible for the majority of sleep-miss accesses. For
these applications, supporting the always-active mode is
very effective.

The second case, the proposed cache aggressively reduces
the sleep-miss penalty by sacrificing the energy efficiency.
For f188.ammp, i164.gzip, i181.mcf, and i256.bzip2 show
clearly this characteristic. This is because a number of
cache lines in these benchmarks are allocated to the
always-active mode. For i164.gzip, a number of cache lines
have the SMD value less than 2 as shown figure 5. This
situations increase the number of always-active lines,

resulting in the similar effects with the non-optimized
conventional cache. Since the influence of LEL1 increase
is larger than the DE reduction effect, as compared with
Cache decay, energy consumption of always-active is large.

In the third case, improves neither performance nor
energy of the conventional cache decay. For instance,
f179.art and i176.gcc fall under this category. As can be
understood from figure 1, there are no performance
degradation with cache decay, i.e. there is extremely little
sleep-miss. These situations strongly restrict the number of
the always-active lines, thus the proposed approach does
not provide any advantages over the conventional cache
decay.

From what has been said above, I have come to the
conclusion that the profits of always-active are decided by
the trade-off between the DEmain_memory reduction effect and
the increase in LEL1. Therefore, always-active technique
has the ability to acquire the energy reduction and the high
performance improvement by performing suitable line
selection.

5.4 Effect of Decay Interval
The always-active method improves the execution time

by reduction of sleep-misses. In order to reduce sleep-miss
in cache decay, it is only necessary to lengthen the decay
interval. Therefore, the execution time and energy at the
time of setting decay interval to 4K, 8K, 64K, and 512K
clock cycle are measured. Figure 13 shows the normalized
execution time and normalized energy of AA1 and cache
decay. Benchmark program is f183.equake. In the case of
512K decay interval, the energy reduction effect is not
obtained, because the period until it changes to sleep-mode
is too long. Correspondingly, if suitable decay interval is
set, cache decay can reduce energy, without performance
degradation. In f183.equake, 64K decay interval is the most
appropriate. However, it is known that optimal decay
interval differs for every program [10]. On the other hand,

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

f1
77

.m
es

a

f1
79

.a
rt

f1
83

.e
qu

ak
e

f1
88

.a
m

m
p

i1
64

.g
zi

p

i1
75

.v
pr

i1
76

.g
cc

i1
81

.m
cf

i1
97

.p
ar

se
r

i2
56

.b
zi

p2

A
ve

ra
ge

Benchmark Programs

B
re

ak
do

w
n

of
 E

ne
rg

y
(J

)

LE L1 DE L1 DE main_memory

Figure 10: Breakdown of Energy
 for Non-Optimized Cache

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

f1
77

.m
es

a

f1
79

.a
rt

f1
83

.e
qu

ak
e

f1
88

.a
m

m
p

i1
64

.g
zi

p

i1
75

.v
pr

i1
76

.g
cc

i1
81

.m
cf

i1
97

.p
ar

se
r

i2
56

.b
zi

p2

A
ve

ra
ge

Benchmark Programs

B
re

ak
do

w
n

of
 E

ne
rg

y
(J

)

LE L1 DE L1 DE main_memory

Figure 11: Breakdown of Energy for Cache Decay

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

f1
77

.m
es

a

f1
79

.a
rt

f1
83

.e
qu

ak
e

f1
88

.a
m

m
p

i1
64

.g
zi

p

i1
75

.v
pr

i1
76

.g
cc

i1
81

.m
cf

i1
97

.p
ar

se
r

i2
56

.b
zi

p2

A
ve

ra
ge

Benchmark Programs

B
re

ak
do

w
n

of
 E

ne
rg

y
(J

)

LE L1 DE L1 DE main_memory

Figure 12: Breakdown of Energy for AA1

except for 512K decay interval, always-active method
constantly reduces energy consumption and is also
suppressing the increase of execution time.

6. Conclusions
During our investigations of cache decay behavior, there

is a spatial locality of accesses to the turning-off lines.
Based on this observation, we have proposed to support the
always-active mode in order to achieve high-performance,
low-leakage caches. In our approach, cache lines which
caused the performance degradation are forced to stay in
the high-speed but high-leakage mode.

We have evaluated the energy-performance efficiency of
the proposed method. As a result, it has been observed that
our approach can eliminate almost the performance
overhead, while maintaining the energy reduction
efficiency, compared with the conventional cache decay.

7. ACKNOWLEDGMENTS
We thank Masayuki Ikeda, Takumi Maruyama, Akira

Katsuno and Mariko Sakamoto who gave us many advices.
This research was supported in part by the Grant-in-Aid for
Creative Basic Research, 14GS0218, 17680005, and
PRESTO, Japan Science and Technology Agency.

8. REFERENCES
[1] CACTI,

http://research.compaq.com/wrl/people/jouppi/CACTI.html
[2] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge,

“Drowsy Caches: Simple Techniques for Reducing Leakage
Power,” Proc. of the 29th Int. Symp. on Computer
Architecture, pp.148-157, May 2002.

[3] R. Fujioka, K. Katayama, R. Kobayashi, H. Ando, and T.
Shimada, “A Preactivating Mechanism for a VT-CMOS
Cache using Address Prediction,” Proc. of the Int. Symp. on
Low Power Electronics and Design, pp.247-250, Aug. 2002.

[4] S. Heo, K. Barr, M. Hampton, and K. Asanovic, "Dynamic
Fine-Grain Leakage Reduction Using Leakage-Biased
Bitlines," Int. Symp. on Computer Architecture (ISCA29),
pp.137-147, May 2002.

[5] S.Kaxiras, Z.Hu, and M.Martonosi, “Cache Decay:
Exploiting Generational Behavior to Reduce Cache Leakage
Power,” Proc. of the 28th Int. Symp. on Computer
Architecture, pp.240-251, June 2001.

[6] C. H. Kim and K. Roy, "Dynamic Vt SRAM: A Leakage
Tolerant Cache Memory for Low Voltage Microprocessors,"
Int. Symp. on Low Power Electronics and Design
(ISLPED2002), pp.251-254, Aug. 2002.

[7] N.S.Kim, K.Flautner, D.Blaauw, and T.Mudge, “Drowsy
Instruction Caches; Leakage Power Reduction using
Dynamic Voltage Scaling and Cache Sub-bank Prediction,”
Proc. of the Int. Symp. on Microarchitecture, pp.219-230,
Nov. 2002.

[8] L.Li, I.Kadayif, Y-F.Tsai, N.Vijaykrishnan, M.J.Irwin, and
A.Sivasubramaniam, “Leakage Energy Management in
Cache Hierarchies,” Proc. of the 11th Int. Conf. on Parallel
Architectures and Compilation Techniques, pp.131-140,
Sep.2002.

[9] L. Li, V. Degalahal, N. Vijaykrishnan, M. Kandemir, M. J.
Irwin, "Soft Error and Energy Consumption Interactions: A
Data Cache Perspective," Proc. of the Int. Symp. on Low
Power Electronics and Design (ISLPED'04), pp.132-137,
Aug. 2004.

[10] D.Parikh, Y.Zhang, K.Sankaranarayanan, K.Skadron, and
M.Stan, “Comparison of State-Preserving Leakage Control
in Caches”, 2003 Workshop on Duplicating, Deconstructing,
and Debunking (WDDD), June 2003

[11] M. Powell, S. Yang, B. Falsafi, K. Roy, and T. N.
Vijaykumar, “Gated-Vdd: A Circuit Technique to Reduce
Leakage in Deep-Submicron Cache Memories,” Int. Symp.
on Low Power Electronic and Design, pp.90-95, July 2000.

[12] A. Sakanaka and T. Sato, "A Leakage-Energy-Reduction
Technique for High-Associativity Caches in Embedded
Systems," Workshop on Memory Access Decoupled
Architectures and Related Issues, pp.51-56, Sep. 2003.

[13] SimpleScalarLLC, http://www.simplescalar.com
[14] SPEC –Standard Performance Evaluation Corporation,

http://www.spec.org/
[15] S.H.Yang, M.D.Powell, B.Falsafi, K.Roy, and

T.N.Vijaykumar, “An Integrated Circuit / Architecture
Approach to Reducing Leakage in Deep-Submicron High-
Performance I-Caches,” Proc. of the 7th Int. Symp. on High-
Performance Computer Architecture, pp.147-157, Feb.2001.

[16] S.H.Yang, M.D.Powell, B.Falsafi, and T.N.Vijaykumar,
“Exploiting Choice in Resizable Cache Design to Optimize
Deep-Submicron Processor Energy-Delay,” Proc. of the 8th
Int. Symp. on High-Performance Computer Architecture,
pp.151-161, Feb.2002.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

AA1 Cache decay AA1 Cache decay

4K 8K 64K 512K

Normalized Execution Time Normalized Energy

Figure 13: Effect of Decay Interval to Execution Time
and Energy (f183.equake)

