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Abstract

Let X be a stochastic process obeying a stochastic differential equation of the
form dXt = b(Xt, θ)dt+dYt, where Y is an adapted driving process possibly depend-
ing on X ’s past history, and θ ∈ Θ ⊂ Rp is an unknown parameter. We consider
estimation of θ when available data from X is discrete, say (Xihn)n

i=0 where hn → 0
and nhn → ∞ as n → ∞. Under some regularity conditions including the ergodicity
of X , we obtain weak consistency and

√
nhn-consistency of a trajectory-fitting esti-

mate as well as a least-squares estimate, leaving Y general as much as possible. A
Wiener-Poisson-driven setup is particularly discussed as an important special case.

Key words and phrases : Discrete sampling, parametric estimation, stochastic differ-
ential equations, trajectory-fitting.

1 Introduction

Consider the family of partly parametrized d-dimensional processes X given by

Xt = X0 +
∫ t

0
b(Xs, θ)dt + Yt, (1.1)

where θ ∈ Θ ⊂ Rp, an open bounded convex domain, X0 is an F0-measurable random
element with L (X0) = η possibly unknown, b : Rd × Θ → Rd is a measurable function,
and Y = (Yt)t∈R+ is a d-dimensional zero-mean adapted process. Suppose that there
exists a true parameter θ0 ∈ Θ which induces true data we observe, and that, instead of
the full trajectory we have discretely sampled data (Xtni

)ni=0, where tni = ihn with posi-
tive bounded sequence (hn) for which hn → 0 and nhn → ∞ as n → ∞. The purpose
of this article is to derive a set of sufficient conditions for the

√
nhn-consistency of the

trajectory-fitting estimator (TFE) and the least-squares estimator (LSE) for θ0 without
any reference to the concrete structure of Y , apart from the ergodic assumption of X
and certain moment conditions (Assumption 3 below); the estimation for parameters
involved in Y is out of our scope, hence we do not express the Y ’s possible dependence
on θ in the notation. Existence of an “exogenous” processes contaminating X is al-
lowed; for example, our result may apply in cases where Y obeys another stochastic
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differential equations (in such a case Y may be regarded as an exogenous randomness
contaminating the skeleton dynamics x = (xt)t∈R+ described by the deterministic system
dxt = b(xt, θ)dt). Within this setup the estimates are not efficient in general, however,
from the practical point of view it is often important to obtain an easy-to-use estimate.
This point is the contribution of this article, more precisely, once the model (the struc-
ture of Y ) is fully specified, the classical one-step improvement together with a “better”
estimating function leads to a more efficient estimator.

The rest of this article is organized as follows. The precise framework and the main
result will be described in Section 2. Section 3 presents a special important case where
everything other than the initial element X0 is realized on the Wiener-Poisson space. In
Section 4 we consider a concrete model for observing performance of the estimates for
some different hn. The proofs are given in the Appendix.

We end this section with some comments. The model in question is a fairly particular
subclass of general “stochastic differential equations”, which plays an important role
for modelling a continuously time-varying phenomenon as they are frequently used in
many fields of application. However, quite often real data is sampled at discrete-time
points, so that we have need of formulating “statistical inference for stochastic differential
equations from sampled data”; clearly this is a rather abstract matter because of diversity
of the model. Such researches date back to, at latest, the middle of the 1970s. In
the light of history in this area, there exists an extensive literature on estimating both
drift and diffusion coefficients for diffusion processes, including an efficient result in a
“smooth” case; in this direction, the reader can consult a great deal of the references
cited in Prakasa Rao [14]. The TFE was studied by e.g. Dietz and Kutoyants [2] for
continuously observed diffusion processes and by Kasonga [8] for a class of discretely
observed diffusions; considering the ergodic Gaussian Ornstein-Uhlenbeck process, one
can notice that the condition of Kasonga [8] is not suitable for ergodic cases, so the route
we shall take in this paper is different from his whereas the same contrast function is
used. The study of the LSE goes back to Dorogovcev [3] and Prakasa Rao [13] also in case
of diffusions. Recently inference for processes with jumps based on sampled data draws
the attention of statisticians, because of their practical importance for several kinds
of realistic data exhibiting accidental big fluctuations. Nevertheless, much less than
diffusions has been known so far: Shimizu and Yoshida [18] and Shimizu [17] studied
asymptotic normality, the both of them dealing with the cases where the jump part of
driving noise is of finite variation. The main result of Shimizu and Yoshida [18] implicitly
includes an issue of LSE for pure-jump cases when allowed jumps are of compound
Poisson type. Further, beyond the Markovian framework (but still with the Markovian-
trend structure), yet no result concerning the discrete sampling has been formulated.
Our present result provides a widely applicable

√
nhn-consistent estimates for the drift

coefficients of processes mentioned above having possibly infinitely many jumps on each
compact time-interval.

2 Statement of the result

Let (Ω,F ,F = (Ft)t≥0, P ) be an underlying complete stochastic basis satisfying the
usual hypothesis (e.g., Protter [15]), on which a d-dimensional zero-mean F-adapted
process Y = (Yt)t∈R+ is endowed. Let Θ ⊂ Rp be an open convex domain with compact
closure Θ, and consider the partly parametrized model X given by (1.1). As described
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in the Introduction, we have only sampled data (Xtni
)ni=0. Let θ0 ∈ Θ denote the true

value, which induce the true image measure of X associated with the initial distribution
η, say P η

0 .

2.1 Two contrast functions

We introduce the set of auxiliary processes {X̄i,t(θ) : t ∈ [tni−1, t
n
i )}n

i=1 defined by
{

dX̄i,t(θ) = b(X̄i,t(θ), θ)dt, t ∈ [tni−1, t
n
i ),

X̄i,tni−1
= Xtni−1

,
(2.1)

and then define Φn(θ) = Φn(θ; (Xtni
)ni=1) by

Φn(θ) =
n∑

k=1

|Xtni
− X̄k,tni

(θ)|2. (2.2)

We define an estimate θ̃n for θ0 by Φn(θ̃n) = infθ∈Θ Φn(θ). We call θ̃n trajectory-fitting
estimate (TFE). We also consider Ψn(θ) = Ψn(θ; (Xtni

)nk=1) given by

Ψn(θ) =
n∑

k=1

|Xtni
− Xtni−1

− hnb(Xtni−1
, θ)|2, (2.3)

and similarly define the least-squares estimate (LSE) θ̂n by Ψn(θ̂n) = infθ∈Θ Ψn(θ).
The LSE is convenient when (2.1) cannot be explicitly solvable. There is an obvious

connection between Φn(θ) and Ψn(θ), that is, according to the usual Euler scheme for
ordinary differential equations we have

X̄k,tni
(θ) = Xtni−1

+ hnb(Xtni−1
, θ) + O(h2

n), P η
0 -a.s., (2.4)

for all θ, under rather mild regularity of (x, θ) �→ b(x, θ) as well as non-explosivity of X.
In the Appendix an asymptotic equivalence between Φn(θ) and Ψn(θ) as well as

between their derivatives will be given. Especially, (C.3) in the Appendix says that, as
soon as (nh3

n)−1/2∇θΨn(θ0) weakly tends to some limit and the rate condition nh3
n =

o(1) holds, θ̂n and θ̂n have a same asymptotic property up to the first order. In this
sense one may bring redundancy of θ̃n to his/her mind. We here just mention that
our numerical experiments given in Section 4 later say that, θ̃n may provide better
performance than θ̂n, and vice versa: roughly speaking, θ̃n (resp. θ̂n) provides a better
performance than θ̂n (resp. θ̃n) for slower decreasing rates of hn. So they may have
different finite-sample properties, thus possibly affect corresponding one-step estimates
when they are constructed.

2.2 Assumptions and main result

Throughout this article we shall use the following notation: Eη
0 [f ] =

∫
fdP η

0 for any
measurable function f ; C stands for a universal constant independent of n, and An � Bn

implies An ≤ CBn with C possibly varying from line to line; ∇a denotes the gradient
operator with respect to a variable a; ‖F‖∗,qI = sups∈I |Fs|q for any interval I ⊂ R+,
constant q > 0, and process F ; finally, we denote ∆b(t, s; θ) = b(Xt, θ) − b(Xs, θ) and
∆b(t; θ, θ′) = b(Xt, θ) − b(Xt, θ

′).
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Assumption 1. The function (x, θ) �→ b(x, θ) is of class C2,3, the possible derivatives
fulfilling supθ∈Θ |∇k

x∇l
θb(x, θ)| � (1 + |x|)C and especially supx∈Rd,θ∈Θ |∇xb(x, θ)| < ∞.

Assumption 2. The stochastic integral equation (1.1) admits a unique solution X, and
the process (X,Y ) is Lq(P η

0 )-bounded for every q > 0 1. Moreover, for every q > 0 there
exists a positive bounded sequence ∆q,n = o(1) for which

sup
1≤i≤n

Eη
0

[
‖X − Xtni−1

‖∗,q
(tni−1,tni ]

]
≤ ∆q,n. (2.5)

Assumption 3. There exist numbers p′ ≥ p′′ > p and a positive bounded sequence
εn = o(1) such that, for every θ1, θ2 ∈ Θ,

Eη
0

[∣∣∣∣ 1
nhn

n∑
i=1

∆b(Xtni−1
; θ1, θ2)�(Ytni

− Ytni−1
)
∣∣∣∣
p′]

≤ εn|θ1 − θ2|p′′.

Also, it holds that

1√
nhn

n∑
i=1

(Ytni
− Ytni−1

)�∇θb(Xtni−1
, θ0) = OP η

0
(1).

Assumption 4. It holds that b(x, θ) = b(x, θ′), π0-a.e., if and only if θ = θ′.

Assumption 5. There exists an invariant probability measure π0 (depending on θ0, but
not on η) for which

T−1

∫ T

0
F (Xt)dt

P η
0 -a.s.−−−−→ π0(F ) (2.6)

as T → ∞ for any π0-integrable function F on Rd.

Define Γ(θ) = [Γ(θ)ij]pi,j=1 : Θ → Rp⊗p by

Γ(θ)ij =
d∑

l=1

∫
∇θi

bl(x, θ)∇θj
bl(x, θ)π0(dx). (2.7)

Our main result is the following, whose proof is postponed to the Appendix.

Theorem. Fix any θ0 ∈ Θ, and suppose hn → 0 and nhn → ∞.

(a) Under Assumptions 1 to 5, θ̃n and θ̂n are weakly consistent under P η
0 .

(b) Further suppose nh3
n = O(1) 2, that nhα

n → ∞ for some constant α ∈ (1, 3), and
that there exists q′ > 1 such that nhn(∆q′,n)2/q′ = O(1). Moreover, suppose Γ(θ0)
is non-degenerate. Then

√
nhn(θ̂n − θ0) and

√
nhn(θ̂n − θ0) are P η

0 -tight.

1Namely supt∈R+
‖(Xt, Yt)‖Lq(P

η
0 ) < ∞ for every q > 0

2We here use the symbol O(1) also for sequences possibly tending to 0.
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2.3 Some remarks

Remark 2.1. Under the assumptions, π0(f) < ∞ for every measurable f of at most
polynomial growth.

Remark 2.2. From Gronwall’s inequality we have

Eη
0

[
‖X − Xtni−1

‖∗,q(tni−1,tni ]

]
� hq

n + Eη
0

[
‖Y − Ytni−1

‖∗,q(tni−1 ,tni ]

]
.

Therefore Eη
0 [‖Y −Ytni−1

‖∗,q(tni−1,tni ]] = o(1) is sufficient for (2.5), while some further estimates

should be made for Y depending on X, as in the case of (3.1) in Section 3.

Remark 2.3. Assumption 5 concerning a “stability” of X is essential in our framework.
Such a property of a stochastic process is of independent interest, and closely related to
the operator-based ergodic theory. Since we here consider naive estimates in the sense
that the precise form of the driving process Y is uninvolved, our result may apply to, for
example, the case where X is possibly non-Markovian, but (X,Y ′) with some process Y ′

is Markovian. Then we are able to utilize a well-developed stability theory for Markov
processes (see the references cited in Masuda [12]) so as to get the ergodic theorem for
(X,Y ′); then we have the ergodic theorem for X as well through projection-type function
F (x, y′) = F1(x) in (2.6). See Example 3.2 and 3.3 in Section 3.

Remark 2.4. If ∆q,n rapidly decreases, then mimicking the argument of Kasonga [7] one
may strengthen the assertion (a) of Theorem to the strong consistency. However, such
cases do not occur in the presence of jumps; e.g., if X is a diffusion process with jumps,
then ∆q,n = O(hn) for every large q > 0. Nevertheless, diffusion type processes with
Markovian drift coefficient and possibly non-Markovian diffusion coefficient are relevant;
cf. Section 3.

Remark 2.5. If a set of additional regularity conditions are in force, we can of course
prove the asymptotic normality of

√
nhn(θ̃n − θ0) and

√
nhn(θ̂n − θ0) of the form

√
nhn(θ̂n − θ0)

L (P η
0 )−−−−→ Np

(
0,Γ(θ0)−1Σ0Γ(θ0)−1,�) (2.8)

for some Σ0 ∈ Rp⊗p. Needless to say, in this case a more specified structure of Y is
required for identifying Σ0. (2.8) follows from the standard argument of the M-estimation
theory. The details are not reported here.

3 Wiener-Poisson-driven case

As a special case let us consider the case where Y belongs to a class of martingales.
Suppose that the underlying basis equips an rw-dimensional standard Wiener process
w and a Poisson random measure {µ(I,E); I ⊂ R+, E ⊂ Rrµ\{0}} with Lévy measure
ν. Suppose that

∫
|z|>1 |z|qν(dz) < ∞ for every q > 0, so that we can define an rµ-

dimensional zero-mean pure-jump Lévy process Jt =
∫ t
0

∫
zµ̃(ds, dz), where µ̃ = µ − ν.

Let M = M c + Md be an F-adapted d-dimensional martingale, where

M c
t =

∫ t

0
σsdws and Md

t =
∫ t

0
ζsdJs

5



with predictable processes σ = (σi
j)1≤i≤d,1≤j≤rw and ζ = (ζi

j)1≤i≤d,1≤j≤rµ possibly de-
pending on the history of X as well as of (w,µ), so that the solution X may be a
non-Markovian. Thus X considered is given by

Xt = X0 +
∫ t

0
b(Xs, θ)ds + M c

t + Md
t . (3.1)

Here we set the Wiener-Poisson-driven setting for clarity of discussion; it is possible to
formulate the result for general martingale Y .

The setting given above is still too general to go forward. Hence we now set the
following ad-hoc assumption.

Assumption WP. For κ = σ and ζ, there exist a finite signed measure rκ on (−∞, 0],
finite F-adapted processes κ(1) and κ(2), and a globally Lipschitz measurable function
Fκ : Rd → Rd, for which κ is represented as

κt = κ
(1)
t

∫
(−t,0]

Fκ(Xt+u)rκ(du) + κ
(2)
t , (3.2)

where ‖κ(1)‖∞ < ∞ 3, ‖κ(2)‖∗,qI < ∞ for every q > 0 and every compact I ⊂ R+. Here,
κ(1), κ(2), Fκ and rκ themselves do not depend on X, that is, κ depends on X through the
function Fκ(·) only.

Indeed, we then obtain:

Lemma 3.1. Suppose that supt∈R+
‖Xt‖Lq(P η

0 ) < ∞ for every q > 0, and that nh2
n =

O(1). Then Assumptions 2 and 3 are implied by Assumption WP.

See Appendix D for the proof of Lemma 3.1. The reason why we presuppose the
Lq(P η

0 )-boundedness of X is that the (functional-type) Lipschitz structure of the coeffi-
cients is not enough to induce the boundedness. A simple example of such a κ is of the
form κt =

∑D
l=0 Fκ(Xt−lδ) for some constant δ > 0 and D ∈ N, in which case it should

be noted that we have to enlarge the underlying stochastic basis in order to equip it with
the initial process (Xt)t∈[−Dδ,0].

Assumption 4 can be easily checked for each given b(x, θ). As for Assumption 5 we do
not know the general answer, and we here go no further than mentioning how to verify
it in some special cases.

Example 3.1. Markovian case. Masuda [12] studied ergodicity as well as exponential
β-mixing bound for general diffusions with jumps. Let X be given by

dXt = b(Xt)dt + σ(Xt)dws +
∫

ζ(Xt−, z)µ̃(dt, dz). (3.3)

The appropriate regularity conditions on the coefficients (b, σ, ζ) as well as on the Lévy
measure ν may lead to Assumption 5 and the Lq(P η

0 )-boundedness of X (see Masuda [12]
for details). In cases where ν(Rrµ) < ∞ and small jumps occur with small probability in
an appropriate sense, Shimizu and Yoshida [18] has provided the first order asymptotic
behavior of an approximate maximum-likelihood type estimate.

3‖ · ‖∞ stands for the sup-norm with respect to ω ∈ Ω and t ∈ R+.
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Example 3.2. Non-Gaussian linear filtering model. Here we mention a case where
the drift coefficient is time-inhomogeneous 4 while Assumption 5 really holds true, and
actually Theorem can apply.

Let Z = (Z1�, Z2�)� be any non-Gaussian (d1 + d2)-dimensional zero-mean Lévy
process with finite moments of any order at time 1 (hence at any t ∈ R+). Consider
the (d1 + d2)-dimensional non-Gaussian Ornstein-Uhlenbeck process X = (X1�,X2�)�

given by (
dX1

t

dX2
t

)
=
{(

a1

a2

)
−
(

A11 A12

A21 A22

)(
X1

t

X2
t

)}
dt +

(
dZ1

t

dZ2
t

)
, (3.4)

where the components of ai ∈ Rdi and Aij ∈ Rdi⊗dj are constants, where all the eigen-
values of A = (Aij) ∈ R(d1+d2)⊗(d1+d2) have positive real parts. Then Assumptions WP
is clearly met. Now suppose that the available data is (X1

ihn
)ni=0 only, and we want

to get an estimate for θ = (a,A) ∈ Θ. This example corresponds to an estimation
problem of a discretely observed continuous-time hidden Markov model with a latent
time-inhomogeneous Markov process X2; the solution X2 admits a similar expression to
(3.6) below. We know that Assumption 5 is fulfilled for every η, and that X is Lq(P η

0 )-
bounded for every q > 0 (cf. Masuda [12]). Suppose the initial value X0 = (x1�

0 , x2�
0 )�

is known.
The point here is that one cannot apply our estimation result directly for X because

of the lack of data (X2
ihn

)ni=1. Nevertheless, our result can apply in this special case, via
a minor modification of Φn and Ψn as follows. Notice that we can obtain the ergodic
theorem for X1 by taking F (x1, x2) = F1(x1) in (2.6) for any π0-integrable F1:

T−1

∫ T

0
F1(X1

t )dt
P η

0 -a.s.−−−−→ π0(F1). (3.5)

Write exp(−tA) = [Kij
t ]2i,j=1, where Kij

t ∈ Rdi⊗dj . Then, by using the expression
Xt = e−tAX0 +

∫ t
0 e−(t−s)AdZs and Fubini’s theorem (e.g. Protter [15, Theorem IV.45]),

we see that

X1
t = x1

0 +
∫ t

0

{
a1 − A11X

1
s − A12

( 2∑
j=1

K2j
s xj

0 +
2∑

j=1

∫ s

0
K2j

s−uduaj

)}
ds

+ Z1
t +

2∑
j=1

∫ t

0

∫ t

u
K2j

s−udsdZj
u. (3.6)

Thus X1 itself forms a time-inhomogeneous Markov process: temporarily allowing the
dependence of b(x, θ) of (1.1) on t, say b(x, t, θ), we have

b(Xt, t, θ) = a1 − A11X
1
t − A12

( 2∑
j=1

K2j
t xj

0 +
2∑

j=1

∫ t

0
K2j

t−uduaj

)
,

which is smooth in θ. Since Kij are deterministic, our result may apply with this minor
change, providing a simple

√
nhn-consistent estimate as long as nh2

n = O(1) and Z
admits moments of any order.

4That is, of the form b(Xt, t, θ) in place of b(Xt, θ).
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See Masuda [10, Section 2] and references therein for fundamental facts of multidi-
mensional Lévy-driven Ornstein-Uhlenbeck processes. See also Masuda [11, Example 2],
in which the method of moment was considered for partially observed models in case of
hn = h > 0 for every n ∈ N.

Example 3.3. Jointly Markovian case. As mentioned in Remark 2.3, Assumption 5 is
met as soon as (X,Y ′) is ergodic for some process Y ′. We here discuss such a case.

Let Z1 and Z2 be two d-dimensional zero-mean Lévy processes admitting moments
of any order, and let Y ′

t =
∫ t
0 ζ(Y ′

s−)dZ2
s with a uniformly elliptic ζ. Suppose (X,Y ′)

fulfills (
dXt

dY ′
t

)
=
(

b(Xt, θ)
0

)
dt +

(
1 aζ(Y ′

t−)
0 ζ(Y ′

t−)

)(
dZ1

t

dZ2
t

)
, (3.7)

where a is a constant such that |a| < 1, which is put just for simplicity of verifying
irreducibility of (X,Y ′). Then the result of Masuda [12] may apply; for instance, it
may be enough that ζ is additionally bounded and that x�b(x, θ) ≤ −ε < 0 outside a
compact set with non-empty interior containing the origin. In this case the target X is
dXt = b(Xt, θ)dt + dYt with Y = Z1 +

∫ ·
0 ζ(Y ′

s−)dZ2
s , a d-dimensional martingale. Our

result then readily applies. This example is a continuous-time version of autoregressive
processes with autocorrelated error in the context of time-series analysis.

4 The effect of data frequency: a numerical example

In this section we look at finite-sample behaviors of TFE and LSE for different decreasing
rates of hn in a one-dimensional Markovian case, which belongs to the Wiener-Poisson-
driven case discussed in the previous section.

Let Z be a non-skewed and centred normal inverse Gaussian Lévy motion (NIGLM)
5 with L (Z1) = NIG(α, 0, δ, 0), where α and δ are positive constants and we know that
E[|Zt|q] < ∞ for every t ∈ R+ and q > 0. Then consider X given by

dXt = −θXtdt +
(

1 +
1

1 + X2
t

)
dZt. (4.1)

Suppose that θ0 > 0 and that nh2
n = O(1). Then all the required assumptions are fulfilled

(see Masuda [12] for checking Assumption 5), and the estimates are explicitly given by

θ̃n = − 1
hn

log

(∑n
i=1 Xtni

Xtni−1∑n
i=1 X2

tni−1

)
and θ̂n = − 1

hn

(∑n
i=1 Xtni

Xtni−1∑n
i=1 X2

tni−1

− 1

)
. (4.2)

For simulation we set θ0 = 3, (α, δ) = (3, 3), and X0 = 0; in this case V ar[Zt] = t,
whereas L (Zt) has much heavier tails than N(0, t), the case of Wiener process; specif-
ically, the density behaves as |x|−3/2 exp(−3|x|). Also we set hn = ∆n−γ for γ > 0 and
∆ > 0. The sample paths of X were simulated via the Euler scheme (cf. Jacod and
Protter [5, Section 6]) with generating mesh in each simulation being hn/100. At each

5The NIGLM possesses no Gaussian component and divergent Lévy measure ν such that�
|z|≤1

|z|ν(dz) = ∞, implying that Z is of infinite variation on every compact time intervals. See Masuda

[9] and references therein for the details of NIG(α, β, δ, µ)-distribution.
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stage we generate 1000 independent trajectories of X, and then the mean and standard
deviation of the estimates were computed. Also computed were sample MSEs obtained
from the 1000 estimates; it seems quite hard to give theoretical expressions for the bias
and MSE of the estimates.

We chose γ = 0.3,0.5 and 0.8 for the decreasing rate of hn. Here we have ∆q,n =
O(hn) (for every large q > 0), and note that we need nh2

n = O(1) for the tightness (take
q′ = 2 in Theorem (b)). Therefore, for β = 0.3 we do not know whether the tightness
holds true or not in our context, while the weak consistency is valid.

The results are given in Table 1, in which the mean, the standard deviation, and
sample MSE are reported for TFE (resp. LSE) in the left (resp. right) side in each
item; in all trials except for the starred case, the quantity

∑n
i=1 Xtni

Xtni−1
/
∑n

i=1 X2
tni−1

was positive so that the corresponding TFE were indeed well-defined. In the case of
(γ,∆, n) = (0.3,5, 500), there was 11 exceptions, so we there reported for the remaining
independent 989 estimates. Nevertheless it is clear from the table that TFE remarkably
dominates LSE for γ = 0.3, whereas LSE becomes better as γ increases. But, practically,
it should be noted that TFE sometimes may not work for too large ∆ and small n, as
seen in the exceptional case above.

This numerical results says that TFE (resp. LSE) turns out to be workable when
the observation times are relatively sparse (resp. dense), although there is no measure
in practice for “sparsity” of sampling schemes, which should be carefully determined by
taking the data characteristic in question into account. Also, TFE itself provides a good
estimate in the linear case.

9



Table 1: TFE θ̃n (left) and LSE θ̂n (right) for (4.1). The true value is θ0 = −3.

γ ∆ n Simulated mean S.D. Sample MSE
0.3 0.5 500 -3.0410 -2.7042 0.6383 0.5661 0.1677 0.1902

1000 -3.0358 -2.7611 0.5477 0.4973 0.0913 0.1183
1.0 500 -3.0584 -2.4302 0.5801 0.4565 0.1167 0.3680

1000 -3.0180 -2.5084 0.4882 0.4030 0.0572 0.2680
3.0 500 -3.0801 -1.6287 0.6283 0.3012 0.1622 1.8886

1000 -3.0305 -1.8014 0.4897 0.2755 0.0584 1.4425
5.0 500∗ -3.1872 -1.1671 0.8722 0.2412 0.6136 3.3628

1000 -3.0789 -1.3545 0.5937 0.2214 0.1305 2.7102
0.5 0.5 500 -3.1300 -3.0183 0.8203 0.7901 0.4697 0.3900

1000 -3.0923 -3.0154 0.7579 0.7386 0.3384 0.2978
1.0 500 -3.0600 -2.8550 0.7092 0.6606 0.2565 0.2114

1000 -3.0579 -2.9125 0.6257 0.5955 0.1566 0.1334
3.0 500 -3.0398 -2.4914 0.5757 0.4681 0.1114 0.3067

1000 -3.0176 -2.6219 0.5028 0.3781 0.0642 0.1788
5.0 500 -3.0340 -2.1970 0.5704 0.4038 0.1070 0.6715

1000 -3.0135 -2.3946 0.4798 0.3774 0.0532 0.3868
0.8 0.5 500 -3.7232 -3.6916 1.4578 1.4441 5.0394 4.8270

1000 -3.5976 -3.5809 1.4094 1.4022 4.3026 4.2035
1.0 500 -3.3340 -3.2896 1.1629 1.1452 1.9404 1.8039

1000 -3.3314 -3.3064 1.1193 1.1101 1.6793 1.6256
3.0 500 -3.1134 -3.0098 0.8446 0.8160 0.5217 0.4436

1000 -3.1296 -3.0695 0.8038 0.7879 0.4343 0.3902
5.0 500 -3.0885 -2.9170 0.7465 0.7054 0.3170 0.2544

1000 -3.0832 -2.9883 0.6947 0.6730 0.2398 0.2052
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Appendix: Proof of Theorem

Write θ = (θa)
p
a=1, and ξk for the kth component of any random vector ξ. In order to

avoid possible misreading of gradient operators, we specifically write ∇[1]B(x(θ), θ) =
∇xB(x, θ)|x=x(θ) and ∇[2,a]B(x(θ), θ) = ∇θaB(x, θ)|x=x(θ) for any function of the form
(x(θ), θ) �→ B(x(θ), θ). Denote by Rθ(x) : Rd → Rd any function indexed by θ such
that supθ∈Θ |Rθ(x)| � (1 + |x|)C . Below we shall use Taylor’s formula and Hölder and
Gronwall-Bellman inequalities without notice.

A Elementary properties of the auxiliary function

We begin with preparing simple almost sure expansions for the sequence (X̄i,tni
(θ))ni=1,

which later enables us to unify the proofs for TFE and LSE.

Lemma A.1. Under Assumption 1, we have

X̄i,tni
(θ) = Xtni−1

+ hnb(Xtni−1
, θ) + h2

nRθ(Xtni−1
), (A.1)

∇θaX̄i,tni
(θ) = hn∇θab(Xtni−1

, θ) + h2
nRθ(Xtni−1

), (A.2)

∇2
θbθa

X̄i,tni
(θ) = hn∇2

θbθa
b(Xtni−1

, θ) + h2
nRθ(Xtni−1

), (A.3)

P η
0 -a.s., for every i ∈ {1, . . . , n}, a, b ∈ {1, . . . , p}, and θ ∈ Θ. If Assumption 2 is

additionally met, the terms Rθ(Xtni−1
) in (A.1) to (A.3) are Lq(P η

0 )-bounded for every
q > 0.

Proof. Since supθ∈Θ,t∈[tni−1,tni ) |X̄i,t(θ)| � (1 + |Xtni−1
|), P η

0 -a.s., it follows from the defini-
tion (2.1) and Assumption 1 that X̄i,tni

(θ) = Xtni−1
+ hnb(Xtni−1

, θ) + h2
nri(θ), where

ri(θ) =
∫ 1

0

∫ 1

0
u
{
∇[1]b(X̄i,s(θ), θ)b(X̄i,s(θ), θ)

}∣∣∣
s=uvhn+tni−1

dudv. (A.4)

Clearly supθ∈Θ |ri(θ)| � (1 + |Xi,tni−1
|), hence we get (A.1). Also we have

∇θaX̄
k
i,tni

(θ) =
∫ tni

tni−1

[∇[1]b
k(X̄i,s(θ), θ)][∇θaX̄i,s(θ)]ds

+
∫ tni

tni−1

∇[2,a]b
k(X̄i,s(θ), θ)ds, (A.5)

∇2
θbθa

X̄k
i,tni

(θ) =
∫ tni

tni−1

{
[∇θaX̄i,s(θ)]�[∇2

[1]b
k(X̄i,s(θ), θ)][∇θb

X̄i,s(θ)]

+[∇[1]b
k(X̄i,s(θ), θ)][∇2

θbθa
X̄i,s(θ)]

+[∇[1]∇[2,a]b
k(X̄i,s(θ), θ)][∇θb

X̄i,s(θ)]
}

ds

+
∫ tni

tni−1

∇[2,b]∇[2,a]b
k(X̄i,s(θ), θ)ds (A.6)

for every k ∈ {1, 2, . . . , d}, from which we obtain supθ∈Θ,t∈[tni−1,tni ) |∇θaX̄i,t(θ)| � hn(1 +
|Xtni−1

|)C and supθ∈Θ,t∈[tni−1,tni ) |∇2
θbθa

X̄i,t(θ)| � hn(1+|Xtni−1
|)C . From this the first terms
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of the right-hand sides of (A.5) and (A.6) can be bounded by a polynomial of |Xtni−1
|.

Then expanding s �→ ∇[2,a]b
k(X̄k,s(θ), θ) and s �→ ∇[2,b]∇[2,a]b

k(X̄k,s(θ), θ) around tni−1

yields (A.2) and (A.3). The second assertion is now obvious under the assumption.

B Proof of (a)

Utilizing Lemma A.1, we shall prove the weak consistency of TFE and LSE simultane-
ously.

Define contrast functions associated with TFE and LSE by (nh2
n)−1{Φn(θ)−Φn(θ0)}

and (nh2
n)−1{Ψn(θ) − Ψn(θ0)}, respectively. We fix any θ0 ∈ Θ in what follows. Define

K0 : Θ → R+ by

K0(θ) =
∫

|b(x, θ) − b(x, θ0)|2π0(dx). (B.1)

By virtue of Assumption 4, K0(θ) = 0 if and only if θ = θ0. Hence, according to the

standard argument, the assertion (a) follows if we prove supθ∈Θ |ΞΛ
n(θ)| P η

0−→ 0 as n → ∞
for both Λn = Φn and Ψn, where

ΞΛ
n(θ) =

1
nh2

n

{Λn(θ) − Λn(θ0)} − K0(θ)

as n → ∞. However, by the definitions of Φn and Ψn it is easy to see that

sup
θ∈Θ

|ΞΦ
n (θ)| ≤ sup

θ∈Θ
|ΞΨ

n (θ)| + I1
n + 2I2

n, (B.2)

where, writing χn
i (θ) = Xtni

− Xtni−1
− hnb(Xtni−1

, θ),

I1
n = sup

θ∈Θ

∣∣∣∣h2
n

n

n∑
i=1

{|ri(θ)|2 − |ri(θ0)|2
} ∣∣∣∣,

I2
n = sup

θ∈Θ

∣∣∣∣ 1n
n∑

i=1

{
χn

i (θ0)�ri(θ0) − χn
i (θ)�ri(θ)

} ∣∣∣∣.
Thus the proof of (a) is complete if we prove the following claims:

Claim B.1. maxj=1,2 Ij
n

P η
0 −a.s.−−−−−→ 0 as n → ∞.

Claim B.2. There exists p′ ≥ p′′ > p such that for every θ1, θ2 ∈ Θ: [U1] ΞΨ
n (θ1)

P η
0−→ 0;

[U2] supn∈N Eη
0 [|ΞΨ

n (θ1)|p′ ] � 1; and [U3] supn∈N Eη
0 [|ΞΨ

n (θ1)− ΞΨ
n (θ2)|p′ ] � |θ1 − θ2|p′′.

Claim B.1 means that it suffices to prove supθ∈Θ |ΞΨ
n (θ)| P η

0−→ 0, which is slightly

simpler to handle than supθ∈Θ |ΞΨ
n (θ)| P η

0−→ 0, and this uniform convergence is in turn
ensured by Claim B.2 (see Ibragimov and Has’minskǐı [4, Appendix I Theorem 20]).
Though we shall prove almost sure convergences in Claim B.1, note that the convergences
in P η

0 -probability are enough for our aim.
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B.1 Proof of Claim B.1

We are going to show Ij
n

P η
0 −a.s.−−−−−→ 0 for j = 1, 2. Fix a sufficiently large q ∈ N.

For I1
n, we readily get

Eη
0 [|I1

n|q] � h2q
n

n

n∑
i=1

{
Eη

0

[(
sup
θ∈Θ

|Rθ(Xtni−1
)|
)2q]}1/2

� h2q
n

by Assumptions 1 and 2 together with what we have seen in the proof of Lemma A.1.

Therefore Borel-Cantelli lemma yields I1
n

P η
0 −a.s.−−−−−→ 0 because hn = o(1) and we may let q

be arbitrarily large.
Next we consider I2

n. Since

I2
n = sup

θ∈Θ

∣∣∣∣ 1n
n∑

i=1

{
χn

i (θ0)�(ri(θ0) − ri(θ)) + hn∆b(tni−1; θ, θ0)�ri(θ)
}∣∣∣∣,

we get Eη
0 [|I(2)

n |q] � c2,1
n + c2,2

n , where

c2,1
n =

1
n

n∑
i=1

Eη
0

[
|χn

i (θ0)|q
(

sup
θ∈Θ

|ri(θ0) − ri(θ)|
)q]

,

c2,2
n =

hq
n

n

n∑
k=1

Eη
0

[(
sup
θ∈Θ

|∆b(tni−1; θ, θ0)|
)q(

sup
θ∈Θ

|ri(θ)|
)q]

.

It is clear that c2,2
n � hq

n. As for c2,1
n , we first estimate as

c2,1
n � 1

n

n∑
i=1

{
Eη

0

[
|χn

i (θ0)|2q
]}1/2

.

On the other hand we have |χn
i (θ0)| �

∫ tni
tni−1

|Xs − Xtni−1
|ds + hn(1 + |Xtni−1

|)C , so that

{
Eη

0

[
|χn

k(θ0)|2q
]}1/2

�
{

h2q−1
n

∫ tni

tni−1

Eη
0 [|Xs|2q + |Xtni−1

|2q]ds

}1/2

+
{
h2q

n Eη
0 [(1 + |Xtni−1

|)C ]
}1/2

� hq
n.

Therefore we obtain c2,1
n � hq

n, so that Eη
0 [|I2

n|q] � hq
n, hence we obtain I2

n

P η
0 −a.s.−−−−−→ 0 as

before.

B.2 Proof of Claim B.2

Proofs of [U1] and [U2]. Fix any θ1 ∈ Θ and any p′ ∈ N greater than p. According to the
definition of ΞΨ

n (θ), simple computations yield Eη
0 [|ΞΨ

n (θ1)|p′ ] � J1
n(θ1)+J2

n(θ1)+J3
n(θ1),
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where

J1
n(θ1) = Eη

0

[∣∣∣∣ 1n
n∑

i=1

|∆b(tni−1; θ1, θ0)|2 − 1
nhn

∫ nhn

0
|∆b(s; θ1, θ0)|2ds

∣∣∣∣
p′]

,

J2
n(θ1) = Eη

0

[∣∣∣∣ 1
nhn

∫ nhn

0
|∆b(s; θ1, θ0)|2ds − K0(θ1)

∣∣∣∣
p′]

,

J3
n(θ1) = Eη

0

[∣∣∣∣ 1
nhn

n∑
i=1

χn
i (θ1)�∆b(tni−1; θ1, θ0) + K0(θ1)

∣∣∣∣
p′]

.

Observe that

J1
n(θ1) � 1

nhn

n∑
i=1

∫ tni

tni−1

Eη
0

[|∆b(s; θ1, θ0) − ∆b(tni−1; θ1, θ0)|p′(1 + |Xs| + |Xtni−1
|)C]ds

� 1
nhn

n∑
k=1

∫ tni

tni−1

(Eη
0 [|Xs − Xtni−1

|2p′ ])1/2ds �
√

∆2p′,n = o(1).

We see (nhn)−1
∫ nhn

0 |∆b(s; θ1, θ0)|2ds
P η

0 −a.s.−−−−−→ K0(θ1) under Assumption 5, hence

sup
n∈N

J2
n(θ1) � sup

n∈N

1
nhn

∫ nhn

0
Eη

0 [|∆b(s; θ1, θ0)|2p′ ]ds + 1 � 1.

Therefore (nhn)−1
∫ nhn

0 |∆b(s; θ1, θ0)|2ds
Lp′(P η

0 )−−−−−→ K0(θ1), hence J2
n(θ1) → 0. As for

J3
n(θ1), we have

J3
n(θ1) � Eη

0

[∣∣∣∣ 1
nhn

n∑
i=1

∫ tni

tni−1

∆b(s, tni−1; θ0)�∆b(tni−1; θ1, θ0)ds

∣∣∣∣
p′]

+ Eη
0

[∣∣∣∣K0(θ1) − 1
n

n∑
i=1

|∆b(tni−1; θ0, θ1)|2
∣∣∣∣
p′]

+ Eη
0

[∣∣∣∣ 1
nhn

n∑
k=1

∆b(tni−1; θ1, θ0)�(Ytni
− Ytni−1

)
∣∣∣∣
p′]

�
√

∆2p′,n + o(1) + o(1) = o(1),

where at the last inequality we used Assumption 3 for the third term. After all it follows
that Eη

0 [|ΞΨ
n (θ1)|p′ ] → 0 and supn∈N Eη

0 [|ΞΨ
n (θ1)|p′ ] � 1. Thus the proofs of [U1] and [U2]

are complete.
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Proof of [U3]. For any fixed θ1, θ2 ∈ Θ, it follows from the assumptions that

Eη
0

[
|ΞΨ

n (θ1) − ΞΨ
n (θ2)|p′

]
≤ Eη

0

[∣∣∣∣ 1
nhn

n∑
i=1

∆b(tni−1; θ1, θ2)�
{

2(Xtni
− Xtni−1

)

− hn

(
b(Xtni−1

, θ1) + b(Xtni−1
, θ2)

)}∣∣∣∣
p′]

� Eη
0

[∣∣∣∣ 1
nhn

n∑
i=1

∫ tni

tni−1

∆b(tni−1; θ1, θ2)�∆b(s, tni−1; θ0)ds

∣∣∣∣
p′]

+ Eη
0

[∣∣∣∣ 1
nhn

n∑
i=1

∆b(tni−1; θ1, θ2)�(Ytni
− Ytni−1

)
∣∣∣∣
p′]

+ Eη
0

[∣∣∣∣ 1n
n∑

i=1

∆b(tni−1; θ1, θ2)�∆b(tni−1; θ0, θ1)
∣∣∣∣
p′]

+ Eη
0

[∣∣∣∣ 1n
n∑

i=1

∆b(tni−1; θ1, θ2)�∆b(tni−1; θ0, θ2)
∣∣∣∣
p′]

� |θ1 − θ2|p′ ,

hence we are done.

C Proof of Theorem (b)

We turn to the proof of
√

nhn-consistency of TFE and LSE. Let ōP η
0
(·) and ŌP η

0
(·) stand

for the stochastic order symbols valid uniformly in θ ∈ Θ. First we prepare the following
simple lemma, from which we can again unify the proof for TFE and LSE.

Lemma C.1. Under Assumptions 1 and 2, we have

∇θaΦn(θ) = ∇θaΨn(θ) + ŌP η
0
(nh3

n), (C.1)

∇2
θbθa

Φn(θ) = ∇2
θbθa

Ψn(θ) + ŌP η
0
(nh3

n), (C.2)

P η
0 -a.s. for every a, b ∈ {1, . . . , p}.

Proof. In view of Lemma A.1, it is easy to see that

∇θaΦn(θ) = ∇θaΨn(θ) − 2h2
n

n∑
i=1

χn
i (θ)�Rθ(Xtni−1

)

+ 2h3
n

n∑
i=1

Rθ(Xtni−1
)�∇θab(Xtni−1

, θ) + 2h4
n

n∑
i=1

Rθ(Xtni−1
)�Rθ(Xtni−1

)

= ∇θaΨn(θ) + h2
nŌP η

0
(nhn) + h3

nŌP η
0
(n) + h4

nŌP η
0
(n)

= ∇θaΨn(θ) + ŌP η
0
(nh3

n),
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where we used c2,1
n � hq

n (with q = 1) proved in Section B.1. Similarly,

∇2
θbθa

Φn(θ) = ∇2
θbθa

Ψn(θ) − 2h2
n

∑
i=1

χn
i (θ)�Rθ(Xtni−1

)

+ 2h3
n

∑
i=1

{
Rθ(Xtni−1

)�[∇θab(Xtni−1
, θ) + ∇θb

b(Xtni−1
, θ)]

+ Rθ(Xtni−1
)�[∇2

θbθa
b(Xtni−1

, θ)]
}

+ 2h4
n

∑
i=1

{
Rθ(Xtni−1

)�Rθ(Xtni−1
) + Rθ(Xtni−1

)�Rθ(Xtni−1
)
}

= ∇2
θbθa

Ψn(θ) + ŌP η
0
(nh3

n),

hence the result.

Recall that θ0 ∈ Θ is presupposed, hence by the weak consistency θ̃n ∈ Θ for every
n large enough with P η

0 -probability tending to 1. Taking a subsequence (θ̃nk
) tending

P η
0 -a.s. to θ0 and then letting k sufficiently large, we may set ∇θΦn(θ̃n) = 0, P η

0 -a.s. for
n large enough. Thus, from Lemma C.1 and the usual expansion we have

1
2nh2

n

∇2
θΦn(θ∗n)

√
nhn(θ̃n − θ0) = − 1

2
√

nh3
n

∇θΦn(θ0),

where θ∗n is a point on the segment connecting θ̃n and θ0, and we now regard the gradients
as column vectors. But Lemma C.1 implies that(

1
2nh2

n

∇2
θΨn(θ∗n) + ōP η

0
(1)
)√

nhn(θ̃n − θ0)

= − 1
2
√

nh3
n

∇θΨn(θ0) + ŌP η
0
(1) (C.3)

under the condition nh3
n = O(1). From Lemma C.1 we know that the term ōP η

0
(1) and

ŌP η
0
(1) in (C.3) are Lq(P η

0 )-bounded for every q > 0 (both identically zero for LSE).
What is crucial is the following uniform WLLN, which will be proved later:

Claim C.1. supθ∈Θ

∣∣(nh2
n)−1∇2

θΨn(θ) − Γ(θ)
∣∣ P η

0−→ 0 with Γ(θ) defined by (2.7).

Define some notation as follows: λn =
√

nhn(θ̃n − θ0), Γn = (2nh2
n)−1∇2

θΨn(θ∗n), and
Σn = −(2

√
nh3

n)−1∇θΨn(θ0). The tightness of (λn) is implied by existence of a tight sub-
subsequence of any subsequence of (λn); e.g. Kallenberg [6, Proposition 4.27]. Take any
subsequence (n′) ⊂ N, then the consistency of θ̃n and the continuity of θ �→ Γ(θ) together
with Claim C.1 imply that we can find a further subsequence (n′′) ⊂ (n′) along which

Γn′′
P η

0 −a.s.−−−−−→ Γ(θ0). Without loss of generality we take (n′′) as an increasing sequence.
By the presupposed non-degeneracy of Γ(θ0), we may suppose that Γ̄m := Γm + ōP η

0
(1),

which corresponds to the term (2nh2
n)−1∇2

θΨn(θ∗n)+ ōP η
0
(1) in the left-hand side of (C.3),

is bounded and non-degenerate for every m ∈ (n′′) large enough. Taking a tail of the
increasing sequence (n′′), we may suppose that (Γ̄m) is bounded and non-degenerate
uniformly in m ∈ (n′′), so that supm∈(n′′) |Γ̄−1

m | � 1, P η
0 -a.s. From (C.3) we then have

λm = Γ̄−1
m {Σm + O(1)}, m ∈ (n′′), P η

0 -a.s., hence the proof is complete if we prove that
the sequence (Σn)n∈N is tight.
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We have Σn = Σ1
n + Σ2

n, where

Σ1
n =

n∑
i=1

1√
nhn

∫ tni

tni−1

∇θb(Xtni−1
, θ0)�∆b(s, tni−1; θ0)ds,

Σ2
n =

n∑
i=1

1√
nhn

∇θb(Xtni−1
, θ0)�(Ytni

− Ytni−1
).

But, under Assumption 2, we can see that Eη
0 [|Σ1

n|] �
√

nhn(∆q′,n)1/q′ = O(1), therefore
(Σ1

n)n∈N is tight in view of Markov’s inequality. This together with Assumption 3 implies
the tightness of Σn. This completes the proofs for both of TFE and LSE.

C.1 Proof of Claim C.1

For every a, b ∈ {1, . . . , p}, we have

1
2nh2

n

∇2
θaθb

Ψn(θ0) =
1
n

n∑
i=1

d∑
j=1

[∇θab
j(Xtni−1

, θ0)][∇θb
bj(Xtni−1

, θ0)]

− 1
nhn

n∑
i=1

d∑
j=1

χn,j
i (θ0)[∇2

θaθb
bj(Xtni−1

, θ0)]

= H1,ab
n (θ0) + H2,ab

n (θ0), say.

Apply Assumption 5 to conclude that H1,ab
n (θ0) tends in P η

0 -probability to Γ(θ0)ab, as in
the argument in Section B.2 (concerning J1

n(θ1) and J2
n(θ1)). Also, mimicking the proof

of J3
n(θ1) = o(1) in Section B.1, it is not difficult to show that H2,ab

n (θ0) = ōP η
0
(1). Thus

it remains to show the modulus of continuity of the random field (H1,ab
n (θ)−Γ(θ)ab)θ∈Θ.

This can be seen as follows. Assumption 1 ensures that, for any θ1, θ2 ∈ Θ and p′ > p,
we have ∇θab

j(x, θ1)∇θb
bj(x, θ1) − ∇θab

j(x, θ2)∇θb
bj(x, θ2) ≤ b̄(x)|θ1 − θ2|p′ for some

measurable function b̄, independent of θ1 and θ2, of at most polynomial growth. Therefore
we see that Eη

0 [|H1,ab
n (θ1)−H1,ab

n (θ2)|p′ ]+Eη
0 [|Γ(θ1)ab−Γ(θ2)ab|p′ ] � |θ1−θ2|p′ , completing

the proof.

D Proof of Lemma 3.1

D.1 On Assumption 2

Specifically writing κ(X) instead of κ, we see that for every Y ′, Y ′′ ∈ D
d (the space of

all càdlàg functions from R+ to Rd),

|κ(Y ′)t − κ(Y ′′)t| ≤ ‖κ(1)‖∞
∣∣∣∣
∫

(−t,0]
(Fκ(Y ′

t+u) − Fκ(Y ′′
t+u))rκ(du)

∣∣∣∣
�

∫
(−t,0]

∣∣Y ′
t+u − Y ′′

t+u

∣∣ |r|(du)

≤ ‖Y ′ − Y ′′‖∗t , P η
0 -a.s.,

where ‖F‖∗t := sups≤t |Fs|. Therefore Assumptions 1 and WP imply the existence and
uniqueness of the solution process X to (3.1) for every θ ∈ Θ, and moreover we know
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that Xt is F0 ∨ σ(wu − wv, Ju − Jv ;u, v ∈ [0, t])-measurable for each t ∈ R+; see, e.g.,
Protter [15, Theorem V-7] for such fundamental facts concerning stochastic differential
equations driven by a semimartingale.

Fix an arbitrary q ≥ 2. Using the assumptions we get

‖κ‖∗,qR+
� sup

t∈R+

Eη
0

[∣∣∣∣
∫

(−t,0]
Fκ(Xu+t)rκ(du)

∣∣∣∣
q]

+ 1

�
(

1 + sup
s∈R+

Eη
0 [|Xs|q]

)
rκ(−R+) + 1 � 1,

hence the Lq(P η
0 )-boundedness of M follows.

We now turn to the estimate (2.5) of Assumption 2. Put

gq,i(t) = Eη
0

[
‖X· − Xtni−1

‖∗,q(tni−1,t]

]
, t ∈ (tni−1, t

n
i ] (D.1)

for q ≥ 2. For diffusions with jumps such an estimate is rather classical and well known,
however, not so straightforward to obtain in our setup.

We shall utilize the following lemma, which is essentially due to Bichteler and Jacod
[1, Lemma (A.14)]; we here rephrase it just to note the orders of the upper bounds in
hn, all of which are obvious from the original proofs.

Lemma D.1. Let q ≥ 2.
(a) For a d-dimensional measurable process H, we have

Eη
0

[∥∥∥∥
∫ ·

tni−1

Hsds

∥∥∥∥
∗,q

(tni−1,tni ]

]
≤ hq−1

n

∫ tni

tni−1

Eη
0 [|Hs|q]ds (D.2)

for i = 1, 2, . . . , n.
(b) For a Rd⊗rw -valued predictable process G, we have

Eη
0

[∥∥∥∥
∫ ·

tni−1

Gsdws

∥∥∥∥
∗,q

(tni−1,tni ]

]
� hq/2−1

n

∫ tni

tni−1

Eη
0 [|Gs|q]ds (D.3)

for i = 1, 2, . . . , n.
(c) For a d-dimensional F ⊗ Brµ-measurable process 6 U(s, z) = U(ω; s, z) defined on
Ω × R+ × (Rrµ\{0}) such that |U(ω; s, z)| ≤ Ūs(ω)ρ(z) with ξ predictable and ρ ∈
L2(ν) ∩ Lq(ν), we have

Eη
0

[∥∥∥∥
∫ ·

tni−1

∫
U(s, z)µ̃(ds, dz)

∥∥∥∥
∗,q

(tni−1,tni ]

]
�
∫ tni

tni−1

Eη
0 [|Ūs|q]ds (D.4)

for i = 1, 2, . . . , n.

Remark D.1. The inequalities (D.2) to (D.4) still hold true P η
0 -a.s. for Eη

0 [·] replaced
by the conditional expectation Eη

0 [·|Ftni−1
].

6Brµ denotes the rµ-dimensional Borel σ-field.
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Now observe that Assumption 1 and Lemma D.1 yield

gq,i(t) �
{

Eη
0

[∥∥∥∥
∫ ·

tni−1

∆b(s, tni−1; θ0)ds +
∥∥∥∥
∗,q

(tni−1,t]

+ hq
n|b(Xtni−1

, θ0)|q

+
∥∥∥∥
∫ ·

tni−1

σsdws

∥∥∥∥
∗,q

(tni−1,t]

+
∥∥∥∥
∫ ·

tni−1

ζsdJs

∥∥∥∥
∗,q

(tni−1,t]

]

� hq−1
n

∫ t

tni−1

gq,i(s)ds + hq
n

+hq/2−1
n

∫ t

tni−1

Eη
0 [|σs|q]ds +

∫ t

tni−1

Eη
0 [|ζs|q]ds, (D.5)

In view of Assumption WP we have that, for κ = σ and ζ and s ≥ tni−1,

|κs|q �
{∫ 0

−s
|Fκ(Xs+u)||rκ|(du)

}q

+ |κ(2)
s |q

�
∫ 0

−s
|Fκ(Xs+u)|q|rκ|(du) + |κ(2)

s |q

�
∫ 0

−(s−tni−1)
|Fκ(Xs+u) − Fκ(Xtni−1

)|q|rκ|(du) + |Fκ(Xtni−1
)|q

+
∫ −(s−tni−1)

−s
|Fκ(Xs+u)|q|rκ|(du) + |κ(2)

s |q

� ‖X − Xtni−1
‖∗,q(tni−1,s] + |Fκ(Xtni−1

)|q +
∫ −(s−tni−1)

−s
|Fκ(Xs+u)|q|rκ|(du) + |κ(2)

s |q,

from which it follows that∫ t

tni−1

Eη
0 [|κs|q]ds �

∫ t

tni−1

gq,i(s)ds + hnEη
0 [|Fκ(Xtni−1

)|q]

+
∫ tni

tni−1

∫ −(s−tni−1)

−s
Eη

0 [|Fκ(Xs+u)|q]|rκ|(du)ds +
∫ tni

tni−1

Eη
0 [|κ(2)

s |q]ds

�
∫ t

tni−1

gq,i(s)ds + hn. (D.6)

Here note that the term “
∫ t
tni−1

gq,i(s)ds” in the upper bound of (D.6) appears only when
Fκ is not identically null. Combine (D.5) and (D.6) to conclude that, for each i = 1, . . . , n,
gq,i(t) � h

q/2
n if ζ ≡ 0, and otherwise gq,i(t) � hn (here we exclude the trivial case

(σ, ζ) ≡ 0); this bound is same as diffusions with or without jumps. Hence the condition√
nhn(∆q′,n)1/q′ = O(1) is fulfilled with q′ = 2, so we get (2.5).
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D.2 On Assumption 3

Fix any integer p′ > p such that p′ ≥ 2, and θ1, θ2 ∈ Θ. Write 1i(s) = 1(tni−1,tni ](s). Then,
using Assumption 1 and Lemma D.1 we have

Eη
0

[∣∣∣∣ 1
nhn

n∑
i=1

∆b(Xtni−1
; θ1, θ2)�(Mtni

− Mtni−1
)
∣∣∣∣
p′]

� (nhn)−p′
{

Eη
0

[∣∣∣∣
∫ nhn

0

n∑
i=1

1i(s)∆b(Xtni−1
; θ1, θ2)�σsdws

∣∣∣∣
p′]

+ Eη
0

[∣∣∣∣
∫ nhn

0

n∑
i=1

1i(s)∆b(Xtni−1
; θ1, θ2)�ζsdJs

∣∣∣∣
p′]}

� (nhn)−p′
{

(nhn)p
′/2−1

∫ nhn

0
Eη

0

[{ n∑
i=1

1i(s)|∆b(Xtni−1
; θ1, θ2)�σs|

}p′]
ds

+
∫ nhn

0
Eη

0

[{ n∑
i=1

1i(s)|∆b(Xtni−1
; θ1, θ2)�ζs|

}p′]
ds

}

� (nhn)−p′
{

(nhn)p
′/2−1

n∑
i=1

∫ tni

tni−1

Eη
0

[
|∆b(Xtni−1

; θ1, θ2)�σs|p′
]
ds

+
n∑

i=1

∫ tni

tni−1

Eη
0

[
|∆b(Xtni−1

; θ1, θ2)�ζs|p′
]
ds

}

� (nhn)−p′
{

(nhn)p
′/2|θ1 − θ2|p′ + nhn|θ1 − θ2|p′

}
� (nhn)−p′/2|θ1 − θ2|p′ ,

hence the first statement of Assumption 3 is fulfilled with εn = (nhn)−p′/2 and p′′ = p′.
All without distinction, we can get

Eη
0

[∣∣∣∣ 1√
nhn

n∑
i=1

(Mtni
− Mtni−1

)∇θb(Xtni−1
, θ0)

∣∣∣∣
p′]

� (nhn)−p′/2
{
(nhn)p

′/2 + nhn

}
� 1.

Thus the second statement of Assumption 3 is also fulfilled.
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