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Abstract
Hypergeometric solutions to theq-Painlev́e equations are constructed by direct linearization of disrcrete Riccati equa-

tions. The decoupling factors are explicitly determined so that the linear systems give rise toq-hypergeometric equations.

1 Introduction

This article is a continuation of our previous work [1] on the hypergeometric solutions to theq-Painlev́e equations in the
following degeneration diagram of affine Weyl group symmetries [2, 3] :

E(1)
8 → E(1)

7 → E(1)
6 → D(1)

5 → A(1)
4 → (A2 + A1)(1) → (A1 +

A1
|α|2=14

)(1) (1)

The list ofq-Painlev́e equations we are going to investigate is given in section 3 below. We remark that theseq-Painlev́e
equations were discovered through various approaches to discrete Painlevé equations, including singularity confinement
analysis, compatibility conditions of linear difference equations, affine Weyl group symmetries andτ-functions on the
lattices. Also, in Sakai’s framework [2], each of theseq-Painlev́e equations is constructed in a unified manner as the
birational action of a translation of the corresponding affine Weyl group on a certain family of rational surfaces.

In [4] we have introduced the formulation of discrete Painlevé equations based on the geometry of plane curves onP2.
On that basis we were able in the first part of [1] to find suitable coordinates for linearization of theq-Painlev́e equations
into three-term relations of hypergeometric functions. As a result we obtained the following degeneration diagram of
basic hypergeometric functions corresponding to (1):

balanced

10W9
→ 8W7 → balanced

3ϕ2
→ 2ϕ1 → 1ϕ1 →

1ϕ1

(
a
0

; q, z

)

1ϕ1

(
0
b

; q, z

) → 1ϕ1

(
0
−q

; q, z

)

This shows the usefulness of geometric consideration in the study of particular solutions of discrete Painleé equations.
In order to determine explicit solutions to those equations written in the literature, further steps of precise computations
are required since the variables to be solved are fixed in advance. We have shown only the results for them in the second
part of [1]. The purpose of this article is to present these explicit solutions including subtle gauge factors and to show the
calculation in detail based on the direct linearization of discrete Riccati equations.

This article is organized as follows: In section 2, we explain the procedure to construct hypergeometric solutions
through the linearization of discrete Riccati equations. We demonstrate this procedure by taking the case ofE(1)

7 as an
example. In section 3, we give the list ofq-Painlev́e equations and their hypergeometric solutions, with the data that
are necessary for constructing solutions. Among the cases in the diagram (1) we have excluded the case ofD(1)

5 , since a
complete identification of hypergeometric solutions has already been given in [5].
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2 Construction of Hypergeometric Solutions

2.1 Discrete Riccati Equation and Its Linearization

Theq-Painlev́e equations admit particular solutions characterized by discrete Riccati equations for special values of pa-
rameters. Reduction to discrete Riccati equation has been already done for all theq-Painlev́e equations[3, 6, 7, 8]. We also
note that such special situations have clear geometrical meaning, as was discussed in [1]. The basic idea for constructing
hypergeometric solution is as follows: we linearize the discrete Riccati equations to yield second order linearq-difference
equations. We then identify them with the three-term relation of an appropriate basic hypergeometric series.

Let us explain this procedure in detail. Suppose we have a discrete Riccati equation of the form

z=
Az+ B
Cz+ D

, (2)

wherez = z(t) andz = z(qt). We also use the notationz = z(t/q), and so forth. Moreover, the coefficientsA, B, C andD
are functions oft. First let us put an ansatz

z=
F
G
. (3)

Then the discrete Riccati equation is linearized to

F
H
= AF + BG,

G
H
= CF + DG, (4)

whereH is an arbitrary decoupling factor. EliminatingG from eq.(4) we have forF the three-term relation

F + c1F + c2F = 0, c1 = −
H
B

(AB+ BD), c2 =
B
B

HH(AD − BC). (5)

The three-term relation for a basic hypergeometric series often takes the form

V1(Φ − Φ) + V2Φ + V3(Φ − Φ) = 0, (6)

where the coefficientsV1,V2 andV3 are factorized into binomials involving the independent variable and parameters.
Comparing eqs.(5) with (6), we have

V2

V1
= 1+ c1 + c2,

V3

V2
= c2. (7)

We look for the decoupling factorH so that these quantities factorize. We then identify the three-term relation with that
for appropriate hypergeometric function. This is done by trial and error with the aid of computer algebra, but it is not
practically difficult since we already know the hypergeometric function and its three-term relation to appear for each
q-Painlev́e equation.

Step 1.Find the decoupling factorH such that

V2

V1
= 1+ c1 + c2,

V3

V2
= c2, (8)

factorize. Then identify the three-term relation

V1(F − F) + V2F + V3(F − F) = 0, (9)

with that for an appropriate hypergeometric function.

Similarly, we have forG the three-term relation

G + d̃1G+ d̃2G = 0, d̃1 = −
H
C

(DC +CA), d̃2 =
C
C

HH(AD − BC). (10)
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However, usually 1+ d̃1 + d̃2 does not factorize forH obtained above. ReplacingG with κG (κ = kκ), we have

z=
1
κ

F
G
, (11)

G+ d1G + d2G = 0, d1 = −
H
kC

(DC +CA), d2 =
C
C

HH

kk
(AD − BC). (12)

We then look fork so that 1+d1+d2 factorizes, and identify eq.(12) with the three-term relation of the same hypergeometric
function asF with different parameters. PuttingH/k = K, this is equivalent to the follwing procedure:

Step 2.In the three-term relation

G+ d1G + d2G = 0, d1 = −
K
C

(DC +CA), d2 =
C
C

KK(AD − BC), (13)

find decoupling factorK so that
U2

U1
= 1+ d1 + d2,

U3

U2
= d2, (14)

factorize. Then identify the three-term relation with that for an appropriate hypergeometric function. Now we have

z=
1
κ

θ1Φ

θ2Ψ
,

H
K
= k,

κ

κ
= k, (15)

whereΦ andΨ are some hypergeometric functions, andθi (i = 1,2) are constants(gauge factors).

Finally we determine the gauge factorsθ1 andθ2:

Step 3.Compare the linear relations,

θ1Φ

H
= Aθ1Φ + κBθ2Ψ,

κθ2Ψ

H
= Cθ1Φ + κDθ2Ψ, (16)

with contiguity relations of the hypergeometric functions to determineθ1 andθ2.

2.2 An Example: Case ofE(1)
7

In this section we demonstrate the construction of the hypergeometric solution to theq-Painlev́e equation of typeE(1)
7 as

an example, following the procedure in the previous section.
Before proceeding, let us first summarize the definition and terminology of the basic hypergeometric series [9]. The

basic hypergeometric seriesrϕs is given by

rϕs

(
a1, . . . , ar

b1, . . . ,bs
; q, z

)
=

∞∑

n=0

(a1; q)n · · · (ar ; q)n

(b1; q)n · · · (bs; q)n(q; q)n

[
(−1)nq( n

2)
]1+s−r

zn,

(a; q)n = (1− a)(1− qa) · · · (1− qn−1a).

(17)

The basic hypergeometric seriesr+1ϕr is calledbalanced1 if the condition

qa1a2 · · ·ar+1 = b1b2 · · ·br , z= q, (18)

is satisfied, and is calledvery-well-poisedif the condition

qa1 = a2b1 = · · · = ar+1br , a2 = qa
1
2
1 , a3 = −qa

1
2
1 , (19)

1The “balanced3ϕ2” in the diagram (1) is due to the convention that was used in [10].
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is satisfied. A very-well-poised hypergeometric seriesr+1ϕr is denoted asr+1Wr :

r+1Wr (a1; a4, . . . ,ar+1; q, z) = rϕs


a1, qa

1
2
1 ,−qa

1
2
1 ,a4 . . . , ar+1

a
1
2
1 ,−a

1
2
1 ,qa1/a4, . . . ,qa1/ar+1

; q, z

 . (20)

Now theq-Painlev́e equation of typeE(1)
7 is given by [2, 3]

( f g− tt)( f g− t2)
( f g− 1)( f g− 1)

=
( f − b1t)( f − b2t)( f − b3t)( f − b4t)

( f − b5)( f − b6)( f − b7)( f − b8)
,

( f g− t2)( f g− tt)

( f g− 1)( f g− 1)
=

(
g− t

b1

) (
g− t

b2

) (
g− t

b3

) (
g− t

b4

)

(
g− 1

b5

) (
g− 1

b6

) (
g− 1

b7

) (
g− 1

b8

) ,
(21)

wheret is the independent variable andbi (i = 1, . . . ,8) are parameters satisfying

t = qt, b1b2b3b4 = q, b5b6b7b8 = 1. (22)

Proposition 2.1 [3, 6] In case ofb1b3 = b5b7, eq.(21) admits a specialization to the discrete Riccati equation,

g =
(tt − 1) f + t

{
−(b6 + b8)t + (b2 + b4)

}

{−(b6 + b8) + (b2 + b4)t} f + b6b8(1− tt)
, (23)

f =
(t2 − 1)b5b7g+ t {(b1 + b3) − (b5 + b7)t}
{t(b1 + b3) − (b5 + b7)}g+ (1− t2)

. (24)

As was pointed out in [1], in the cases ofE(1)
6,7,8 the variablesf andg are not expressed by ratio of hypergeometric functions.

We choose the variable as2

z=
g− t/b1

g− 1/b5
. (25)

Then the discrete Riccati equation (23) and (24) is rewritten as

z=
Az+ B
Cz+ D

,

with

A = b1b5(−b3 + b5t)

×
[
b4b6b8q2t3 + (b1b4b5 − b2

4b5 − b1b4b6 − b1b4b8 − b5b6b8q)qt2

+(b1b2
4 + b4b5b6q+ b4b5b8q+ b1b6b8q− b4b6b8q)t − b1b4b5

]
, (26)

B = −(b1 − b4)b2
5(b1b4 − qb6b8)t(b5 − b3t)(−1+ qt2), (27)

C = −b2
1b4(b5 − b6)(b5 − b8)(b3 − b5t)(−1+ qt2), (28)

D = b1b5(b5 − b3t)

×
[
−b1b4b5qt3 + (b1b2

4 + b4b5b6q+ b4b5b8q+ b1b6b8q− b4b6b8q)t2

+(b1b4b5 − b2
4b5 − b1b4b6 − b1b4b8 − b5b6b8q)t + b4b6b8

]
. (29)

2This variablez should be understood as a ratio ofτ functions.
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Step 1.We choose the decoupling factorH as

H =
1

qb1b5(b5t − b3)(b1t − b5)(b4t − b6)(b4t − b8)
. (30)

Then we have forF the three-term relation

V1(F − F) + V2F + V3(F − F) = 0,

V2

V1
=

b5(b3 − b4)(b1b4 − qb6b8)(−1+ t)(1+ t)(−1+ qt2)
q(b5 − b1t)(−b6 + b4t)(−b8 + b4t)(−b3 + b5t)

,

V3

V1
=

(b5 − b3t)(−b1 + b5t)(−b4 + b6t)(−b4 + b8t)(−1+ qt2)
(b5 − b1t)(−b6 + b4t)(−b8 + b4t)(−b3 + b5t)(−q+ t2)

.

(31)

The three-term relation for the very-well-poised basic hypergeometric series

Φ = 8W7

a0; a1, a2,a3,a4,a5; q,
q2a2

0

a1a2a3a4a5

 , (32)

is given by [11]

U1(Φ − Φ) + U2Φ + U3(Φ − Φ) = 0, Φ = Φ |a2→qa2,a3→a3/q, Φ = Φ |a2→a2/q,a3→qa3,

U1 =

(1− a2)

(
1− a0

a2

) (
1− qa0

a2

) (
1− qa0

a1a3

) (
1− qa0

a3a4

) (
1− qa0

a3a5

)

a3

(
1− a2

a3

) (
1− qa2

a3

) , U3 = U1| a2↔a3,

U2 =
qa2

0

a1a2a3a4a5

(
1− qa0

a2a3

)
(1− a1)(1− a4)(1− a5).

(33)

Comparing eqs.(31) with (33), we identifyF with 8W7 as

F ∝ 8W7

(
b1b8

b3b5
;

qb8

b5
,
b1t
b5
,

b1

b5t
,
b2

b3
,
b4

b3
; q,

b5

b6

)
. (34)

Step 2.We choose the decoupling factorK as

K =
1

b1b5(qb5t − b3)(b1t − b5)(b4t − b6)(b4t − b8)
. (35)

Then we have forG the three-term relation

X1(G −G) + X2F + X3(G −G) = 0,

X2

X1
=

b5(b3 − b4)(b1b4 − b6b8)(−1+ t)(1+ t)(−1+ qt2)
(b5 − b1t)(−b6 + b4t)(−b8 + b4t)(−b3 + qb5t)

,

X3

X1
=

(qb5 − b3t)(−b1 + b5t)(−b4 + b6t)(−b4 + b8t)(−1+ qt2)
(b5 − b1t)(−b6 + b4t)(−b8 + b4t)(−b3 + qb5t)(−q+ t2)

.

(36)

Comparing eqs.(36) with (33), we have

G ∝ 8W7

(
b1b8

b3b5
;

b8

b5
,
b1t
b5
,

b1

b5t
,
b2

b3
,
b4

b3
; q,

qb5

b6

)
. (37)

Moreover, fromk = H/K = (1− b3/qb5t)/(1− b3/b5t), we haveκ = 1− b3/b5t. Therefore we obtain

z∝ 1

1− b3

b5t

8W7

a0; qa1,a2,a3,a4,a5; q,
qa2

0

a1a2a3a4a5



8W7

a0,a1,a2,a3,a4,a5; q,
q2a2

0

a1a2a3a4a5


, (38)
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with

a0 =
b1b8

b3b5
, a1 =

b8

b5
, a2 =

b1t
b5
, a3 =

b1

b5t
, a4 =

b2

b3
, a5 =

b4

b3
,

q2a2
0

a1a2a3a4a5
=

qb5

b6
. (39)

Step 3.Let us put
F = θ(qa1,a2, a3)Φ(qa1,a2, a3), G = θ(a1, a2,a3)Φ(a1,a2,a3), (40)

whereθ(a1, a2,a3) is a gauge factor to be determined. Here, we have omitted the dependence ofa0,a4 anda5, since they
are not relevant to the calculation. Then linear equations (16) yield

1
κHB

θ(qa1,qa2,a3/q)
θ(a1,a2,a3)

Φ(qa1,qa2, a3/q) =
A
κB
θ(qa1,a2,a3)
θ(a1,a2,a3)

Φ(qa1,a2,a3) + Φ(a1,a2,a3), (41)

and
κ

κHD
θ(a1,qa2,a3/q)
θ(a1,a2,a3)

Φ(a1, qa2,a3/q) =
C
κD
θ(qa1,a2,a3)
θ(a1,a2,a3)

Φ(qa1,a2,a3) + Φ(a1,a2,a3), (42)

respectively. Now, we have the contiguity relations forΦ = 8W7 [11]

a1

(
1− a0q

a1a3

) (
1− a0q

a1a4

) (
1− a0q

a1a5

)

1− a0q
a1

Φ(a1/q,a2,a3) −
(
a1 ↔ a2

)

= (a1 − a2)

1−
a2

0q2

a1a2a3a4a5

Φ(a1,a2,a3),

(43)

(a2 − 1)

(
1− a0

a2

)
Φ(a1/q,qa2,a3) +

(
1− a1

q

) (
1− a0q

a1

)
Φ(a1,a2,a3)

=

(
a2 −

a1

q

) (
1− a0q

a1a2

)
Φ(a1/q,a2,a3).

(44)

We denote eqs.(43) and (44) as CR1[a1,a2,a3] and CR2[a1,a2,a3], respectively. Moreover, note that the relations
CR1[a1,a2,a3] and CR2[a1, a2,a3] hold for any permutation ofa1,a2 anda3, since these parameters are on equal footing
in Φ = 8W7.

Now we eliminateΦ(a1,a2,a3/q) from CR1[a1,a3,a2] and CR2[a3,a2,a1]. Shifting a1 to qa1, we have a linear rela-
tion amongΦ(a1, qa2,a3/q),Φ(a1, a2,a3) andΦ(a1/q,a2,a3), which should coincide with eq. (41). Similarly, eliminating
Φ(qa1,a2,a3/q) from CR1[qa1,a3,a2] and CR2[a3,a1,a2], we have a linear relation amongΦ(qa1,a2,a3),Φ(a1,a2,a3)
andΦ(a1,a2,a3/q). Elimination furtherΦ(a1,a2,a3/q) from this relation and CR2[a3,a2,a1] yields a linear relation
amongΦ(a1, qa2,a3/q),Φ(qa1,a2,a3) andΦ(a1, a2,a3), which should coincide with eq.(42). From these calculations, we
find thatθ(a1, a2,a3) should satisfy

θ(a1,qa2,a3/q)
θ(a1,a2,a3)

=

(
1− a2

a0

) (
1− a3a5

a0q

)

(
1− a2a5

a0

) (
1− a3

a0q

) =

(
1− b3t

b8

) (
1− b4

b8qt

)

(
1− b4t

b8

) (
1− b3

b8qt

) ,

θ(qa1,a2,a3)
θ(a1,a2,a3)

= 1− a1

a0
= 1− b3

b1
,

θ(qa1,qa2,a3/q)
θ(a1,a2,a3)

=
θ(a1,qa2,a3/q)
θ(a1,a2, a3)

× θ(qa1,a2,a3)
θ(a1,a2,a3)

,

(45)

which yield

θ(a1,a2,a3) =

(
a2

a0q
,
a3a5

a0q
,

a1

a0q

)

∞(
a2a5

aq
,

a3

a0q

)

∞

=

(
b3t
qb8
,

b4

qb8t
,

b3

qb1

)

∞(
b4t
qb8
,

b3

qb8t

)

∞

. (46)
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Therefore we arrive at the final result

z =
1

1− b3

b5t

θ(qa1,a2,a3)
θ(a1,a2,a3)

Φ(qa1,a2,a3)
Φ(a1,a2, a3)

=

1− b3

b1

1− b3

b5t

8W7

a0; qa1,a2,a3,a4,a5; q,
qa2

0

a1a2a3a4a5



8W7

a0,a1,a2,a3,a4,a5; q,
q2a2

0

a1a2a3a4a5


.

(47)

3 Hypergeometric Solutions

Hypergeometric solutions to otherq-Painlev́e equations can be constructed by the same procedure as that was demon-
strated in the previous section. Instead of describing full procedure, we give a list of equations, solutions and the other
data that are necessary for construction of solutions. We note that the case ofD(1)

5 is omitted as mentioned in the introduc-
tion.

3.1 Case ofE(1)
8

3.1.1 Equation and Solution

(1) q-Painlev́e equation [3, 6, 12]

(gst− f )(gst− f ) − (s2t2 − 1)(s2t2 − 1)(
g
st
− f

) ( g
st
− f

)
−

(
1− 1

s2t2

) (
1− 1

s2t2

) = P( f , t,m1, . . . ,m7)
P( f , t−1,m7, . . . ,m1)

,

( f st− g)( f st− g) − (s2t2 − 1)(s2t2 − 1)


f

st
− g


(

f
st
− g

)
−

(
1− 1

s2t2

) (
1− 1

s2t2

) =
P(g, s,m7, . . . ,m1)

P(g, s−1,m1, . . . ,m7)
,

(48)

where
P( f , t,m1, . . . ,m7) = f 4 −m1t f 3 + (m2t2 − 3− t8) f 2

+(m7t7 −m3t3 + 2m1t) f + (t8 −m6t6 +m4t4 −m2t2 + 1),
(49)

andmk (k = 1,2, . . . 7) are the elementary symmetric functions ofk-th degree inbi (i = 1,2, . . . ,8) with

b1b2 · · · b8 = 1. (50)

Moreover,
t = qt, t = q

1
2 s. (51)

(2) Constraint on parameters [6]
qb1b3b5b7 = 1, b2b4b6b8 = q. (52)

(3) Hypergeometric solution

z=

g−
(

s
b1
+

b1

s

)

g−
(

s
b8
+

b8

s

) = λ Φ(q4a0; a1,q2a2, . . . ,q2a7)
Φ(a0; a1 . . . , a7)

, (53)
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whereΦ is defined in terms of the balanced10W9 series by

Φ(a0; a1, . . . , a7) = 10W9(a0; a1, . . . ,a7; q2,q2)

+

(
q2a0,

a7

a0
; q2

)

∞
a0

a7
,
q2a2

7

a0
; q2


∞

6∏

k=1

(
ak,

q2a7

ak
; q2

)

∞(
q2a0

ak
,
aka7

a0
; q2

)

∞

10W9


a2

7

a0
;

a1a7

a0
, . . . ,

a6a7

a0
,a7; q2,q2

 .
(54)

Here,ai (i = 0,1, . . . ,7) andλ are given by

a0 =
1

qb1b2b2
8

, a1 =
q2

b2b8t2
, a2 =

s2

b2b8
,

ai =
bi

b8
(i = 3,5,7), ai =

bi

b1
(i = 4,6),

(55)

and

λ =
b1b4b6

b8s2

(
1− b4b6

b1b8

) (
1− q2 b4b6

b1b8

)
(1− b3b5t2)(1− b3b7t2)(1− b5b7t2)

∏

i=2,4,6

(
1− bi

b1

)

(
1− s2

b1b8

) (
1− q2s2

b1b8

) (
1− b4

b8

) (
1− b6

b8

) (
1− q

b1b8s2

) ∏

i=3,5,7

(
1− b4b6

b1bi

) , (56)

respectively.

3.1.2 Data

(1) Riccati equation ∣∣∣∣∣∣∣∣∣∣∣

1 f g f g
1 f1 g1 f1g1

1 f3 g3 f3g3

1 f5 g5 f5g5

∣∣∣∣∣∣∣∣∣∣∣
= 0,

∣∣∣∣∣∣∣∣∣∣∣

1 f g fg
1 f8 g8 f8g8
1 f6 g6 f6g6
1 f4 g4 f4g4

∣∣∣∣∣∣∣∣∣∣∣
= 0, (57)

where

fi = bi t +
1
bi t
, gi =

s
bi
+

bi

s
. (58)

The Riccati equation forz=
g− g1

g− g8
is given by

z=
Az+ B
Cz+ D

, (59)

B = − f35g13g15d′1468,

C = f46g48g68d1358,

D = − f35 f46 f18g13g15g48g68,

∆ = AD− BC = f13 f35 f15 f46 f48 f68g13g15g35g18g46g48g68g18,

(60)

where fi j = fi − f j and

d1358=

∣∣∣∣∣∣∣∣∣∣∣

1 f1 g1 f1g1

1 f3 g3 f3g3

1 f5 g5 f5g5

1 f8 g8 f8g8

∣∣∣∣∣∣∣∣∣∣∣
, d′1468=

∣∣∣∣∣∣∣∣∣∣∣

1 f1 g1 f1g1
1 f4 g4 f4g4
1 f6 g6 f6g6
1 f8 g8 f8g8

∣∣∣∣∣∣∣∣∣∣∣
, (61)

respectively.
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(2) Three-term and contiguity relations for hypergeometric function [13]

(a) Three-term relation
U1(Φ − Φ) + U2Φ + U3(Φ − Φ) = 0, (62)

where

U1 =

a1(1− a2)

(
1− a0

a2

) (
1− q2a0

a2

)

(1− q2a2

a1
)

7∏

j=3

(
1− q2a0

a1a j

) ,

U2 = −(a1 − a2)

(
1− q2a0

a1a2

) 7∏

j=3

(1− a j), U3 = U1|a1↔a2,

(63)

Φ = Φ(a0; a1/q
2, q2a2,a3, . . . ,a7), Φ = Φ(a0; q2a1,a2/q

2,a3, . . . ,a7), (64)

andΦ is defined by eq.(54).

(b) Contiguity relations

Φ(a0; a1/q
2,q2a2,a3, . . . ,a7) − Φ(a0; a1,a2,a3, . . . ,a7)

= V1 Φ(q4a2
0; a1,q

2a2, . . . , q
2a7), (65)

V2 Φ(q4a2
0; a1, q

2a2,q
2a3, . . . , q

2a7) − V3 Φ(q4a2
0; q2a1,a2,q

2a3, . . . , q
2a7)

= V4 Φ(a0; a1,a2,a3, . . . ,a7), (66)

where

V1 =

q2a0

a2

(
1− q2a2

a1

) (
1− a1a2

q2a0

)
(1− q2a0)(1− q4a0)

7∏

j=3

(1− a j)

(
1− q2a0

a1

) (
1− q4a0

a1

) (
1− a0

a2

) (
1− q2a0

a2

) 7∏

j=3

(
1− q2a0

a j

) ,

V2 =

a2
1(1− a2)

7∏

j=3

(
1− q2a0

a1a j

)

(
1− q2a0

a1

) (
1− q4a0

a1

) , V3 = V2|a1↔a2,

V4 =

a1

(
1− a2

a1

) 7∏

j=3

(
1− q2a0

a j

)

(1− q2a0)(1− q4a0)
.

(67)

(3) Decoupling factors

H =
D
∆
= − f18

f13 f15 f48 f68g35g18g46g18
, K =

1
D
= − 1

f35 f46 f18g13g15g48g68
, (68)

so that

k =
H
K
=

D2

∆
=

f35 f46 f 2
18g13g15g48g68

f13 f15 f48 f68g35g46g18
. (69)

(4) Identification

z=
1
κ

F
G
, F ∝ Φ(q4a0; a1,q

2a2, . . . , q
2a7), G ∝ Φ(a0; a1 . . . , a7), κ = kκ, (70)

whereai (i = 0, . . . ,7) are given by eq.(55).
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(5) Gauge factors
Putting

F = θ(q4a0; a1,q
2a2, . . . , q

2a7)Φ(q4a0; a1,q
2a2, . . . ,q

2a7),

G = θ(a0; a1 . . . , a7)Φ(a0; a1 . . . , a7),
(71)

we have:
θ(a0; a1/q2,a2q2, . . . ,a7)
θ(a0; a1 . . . , a7)

= 1,
1
κ

θ(q4a0; a1,q2a2, . . . ,q2a7)
θ(a0; a1 . . . , a7)

= λ. (72)

3.2 Case ofE(1)
6

3.2.1 Equation and Solution

(1) q-Painlev́e equation[3, 14, 15]

( f g− 1)( f g− 1) = tt
( f − b1t)( f − b2t)( f − b3t)( f − b4t)

( f − b5t)

(
f − t

b5

) ,

( f g− 1)( f g− 1) = t2

(
g− 1

b1

) (
g− 1

b2

) (
g− 1

b3

) (
g− 1

b4

)

(g− b6t)

(
g− t

b6

) ,

t = qt, b1b2b3b4 = 1.

(73)

(2) Constraint on parameters [3, 15]
b1b2 = b5b6. (74)

(3) Hypergeometric solution

z=
g− 1

b1

g− tb6
=

1− b3

b1

1− b1b2b3t
b5

Φ(qa,b, c,d,e)
Φ(a,b,qc,d,e)

, (75)

whereΦ is the balanced3ϕ2 series defined by

Φ(a,b, c, d,e) = 3ϕ2

(
a,b, c
d,e

; q,
de
abc

)
, (76)

with

a =
b3b5

t
, b =

b3

b2
, c = b2

1b2b3, d = q
b3b2

5

b2
, e= qb1b2b2

3. (77)

3.2.2 Data

(1) Riccati equation [3, 15]

g =
1+

b5t
b1b2

( f − b1 − b3)

f − tb5
, f =

1+ b6t(b3b4g− b3 − b4)
g− tb6

. (78)

The Riccati equation for

z=
g− 1/b1

g− tb6
, (79)

10



is given by,

z=
Az+ B
Cz+ D

,

A = b1b5(b3b5 − t)(b5 − b1b2b3t)(−b2 + b5qt),

B = −b2
5t(b1 − b3)(−1+ b2

1b2b3)(−b2 + b5qt),

C = qtb1(b1b2 − b5)(b1b2 + b5)(b3b5 − t)(−b5 + b1b2b3t),

D = −b5

[
b1b2b3b2

5 + (−b3
1b2

2b3b5 − b3
1b2

2b3b5q− b2b3b3
5q)t

+(b3
1b2

2 − b2
1b2

2b3 + b4
1b3

2b2
3 − b1b2

5 + b3b2
5 + b3

1b2b3b2
5 + b2

1b2
2b3b2

5 − b2
1b2b2

3b2
5 + b2

1b2
2b3b2

5q)qt2

−b4
1b3

2b3b5q2t3
]
.

(80)

(2) Three-term and contiguity relations for hypergeometric function [10]

(a) Three-term relation
V1

(
Φ − Φ

)
+ V2Φ + V3

(
Φ − Φ)

= 0, (81)

where

V1 =

(
1− q

z

)
(1− a) , V2 = (1− b)(1− c), V3 =

a
z

(
1− d

a

) (
1− e

a

)
,

Φ = Φ(a,b, c, d,e) = 3ϕ2

(
a,b, c
d,e

; q; z

)
, z=

de
abc
, Φ = Φ|a→qa , Φ = Φ|a→a/q .

(82)

(b) Contiguity relations

(a− c)Φ(a,b, c,d,e) + (1− a)Φ(qa,b, c,d,e) − (1− c)Φ(a,b,qc,d,e) = 0, (83)

(a− c)(de− abc)Φ(a,b, c,d,e) + bc(d − a)(e− a)Φ(a/q,b, c,d,e)

−ab(d − c)(e− c)Φ(a, b, c/q,d,e) = 0. (84)

(3) Decoupling factors

H =
1

b1b3b5(−b5 + b2
1b2t)(b5 − b1b2b3t)(b2 − qb5t)

,

K =
1

b1b3b5(−b5 + b2
1b2t)(b5 − qb1b2b3t)(b2 − qb5t)

,

k =
H
K
=

b5 − qb1b2b3t
b5 − b1b2b3t

, κ = 1− b1b2b3t
b5

.

(85)

(4) Identification

z=
1
κ

F
G
, F ∝ Φ(qa, b, c,d,e), G ∝ Φ(a, b,qc,d,e), (86)

wherea, . . . ,eare given by eq.(77).

(5) Gauge factors
Putting

F = θ(qa,b, c,d,e)Φ(qa,b, c,d,e), G = θ(a,b,qc,d,e)Φ(a, b,qc,d, e), (87)

we have:
θ(a,b, c,d,e)
θ(a,b,qc,d,e)

=
θ(qa,b, c, d,e)
θ(a,b,qc, d,e)

= 1− b3

b1
,
θ(a/q,b,qc,d,e)
θ(a,b,qc,d,e)

= 1. (88)
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3.3 Case ofA(1)
4

3.3.1 Equation and Solution

(1) q-Painlev́e equation [3]

gg=

(
f +

a1

t

) (
f +

1
a1t

)

1+ a3 f
,

f f =

(
g+

a2

s

) (
g+

1
a2s

)

1+ g/a3
,

t = qt, t = q
1
2 s.

(89)

(2) Constraint on parameters [3]
a1a2a2

3 = q−
1
2 . (90)

(3) Hypergeometric solution

g = − 1

a1a2
3t

Φ(α1, α2, z)
Φ(α1,qα2, z)

, f =
1
a3

1−
1

a2
2


Φ(qα1,qα2, z)
Φ(α1,qα2, z)

, (91)

whereΦ is the2ϕ1 series defined by

Φ(α1, α2, z) = 2φ1

(
α1, α2

0
; q, z

)
, (92)

with

α1 =
1

a2
2

, α2 = a2
1, z=

t
a1a3
. (93)

Note that the solution is also expressible in terms of1φ1 series by using the formula [16],

2φ1

(
a,b
0

; q, z

)
=

(bz; q)∞
(z; q)∞

1φ1

(
b
bz

; q,az

)
. (94)

3.3.2 Data

(1) Riccati equation [3]

g =
a2

3 g+
1− a2

1

a1t

−a3g+


1

a2
3

− 1
a1a3t


, g = −

f +
1

a1t
a2

3

. (95)

(2) Three-term and contiguity relations for hypergeometric function

(a) Three-term relation

α1α2

q
z

(
Φ − Φ

)
+

z
q

(1− α1)(1− α2) Φ +

(
z
q
− 1

) (
Φ − Φ)

= 0, (96)

where

Φ(α1, α2, z) = 2φ1

(
α1, α2

0
; q, z

)
, Φ = Φ|z→qz , Φ = Φ|z→z/q . (97)
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(b) Contiguity relations

Φ(α1, α2, z) − α2Φ(α1, α2,qz) = (1− α2) Φ(α1,qα2, z), (98)

Φ(α1, α2/q, z) − Φ(α1, α2, z) = −
α2z
q

(1− α1) Φ(qα1, α2, z), (99)

α1α2zΦ(α1,qα2,qz) = Φ − (1− α2z) Φ(α1,qα2, z). (100)

(3) Decoupling factors

H =
1

a2
1a2

3

, K =
1

qa2
1a2

3

, k =
H
K
= q, κ = t. (101)

(4) Identification

f =
1
κ

F
G
, F ∝ Φ(α1, α2, z), G ∝ Φ(α1,qα2, z), (102)

with parameters given in eq.(93).

(5) Gauge factors

Putting
F = θ(α1, α2, z)Φ(α1, α2, z), G = θ(α1,qα2, z)Φ(α1, qα2, z), (103)

we have:
θ(α1, α2,qz)
θ(α1, α2, z)

= 1,
θ(α1, qα2, z)
θ(α1, α2, z)

= −a1a2
3. (104)

3.4 Case of(A2 + A1)(1)

3.4.1 Equation and Solution

(1) q-Painlev́e equation [2, 3, 7, 8, 17]

gg f = b0
1+ a0t f
a0t + f

, g f f = b0

a1

t
+ g

1+
a1

t
g
, t = qt. (105)

Eq. (105) admits two different specializations for hypergeometric solutions: (a) specialization ofbi (parameter of
A1), (b) specialization ofai (parameter ofA2). See also [7, 8] for details.

(2) Constraint on parameters

(a)
b0 = q. (106)

(b)
a0a1 = q. (107)

(3) Hypergeometric solution

(a)

g = −a1

t

1−
q2

a2
0a2

1


Φ(b, z)
Φ(q2b, z)

, f =
q2t

a0a2
1

1

1− q2

a2
0a2

1

Φ(q2b, q2z)
Φ(b, z)

, (108)

where

Φ = Φ(b, z) = 1ϕ1

(
0
b

; q2, z

)
, (109)

with
b = q2/a2

0a2
1, z= q2t2/a2

1. (110)
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(b)

g =
b0

a0t
Ψ(a, z)
Ψ(a,q2z)

, f = −a0t
Ψ(a,q2z)
Ψ(a, z)

, (111)

where

Ψ = Ψ(a, z) = 1ϕ1

(
a
0

; q2, z

)
, (112)

with
a = a2

0t2, z= q/b0. (113)

3.4.2 Data

(1) Riccati equation

(a)

f =

(
a2

0a2
1/q− a2

0qt2
)

f − a0qt

a0t f + 1
, g = −a0a1

1
a0t + f

. (114)

(b)

g = −g− a0b0t
a0tg− b0

, f g = −b0. (115)

(2) Three-term and contiguity relations for hypergeometric function

(a) (i) Three-term relation

b
z

(
Φ(b,q2z) − Φ(b, z)

)
+ Φ(b, z) +

q2

z

(
Φ(b, z/q2) − Φ

)
= 0, (116)

where

Φ(b, z) = 1ϕ1

(
0
b

; q2, z

)
. (117)

(ii) Contiguity relations

Φ(b, z) − b
q2
Φ(b,q2z) =

(
1− b

q2

)
Φ(b/q2, z), (118)

Φ(b, z) − Φ(b, z/q2) =
z/q2

1− b
Φ(q2b, z). (119)

(b) (i) Three-term relation

(1− a)
z
q2

(
Ψ(q2a, z) − Ψ(a, z)

)
− az

q2
Ψ(a, z) +

(
Ψ(a/q2, z) − Ψ(a, z)

)
= 0, (120)

where

Ψ(a, z) = 1ϕ1

(
a
0

; q2, z

)
. (121)

(ii) Contiguity relations

Ψ(a, z) − aΨ(a,q2z) = (1− a)Ψ(q2a, z), (122)

Ψ(a, z) − Ψ(q, z/q2) = (1− a)
z
q2
Ψ(q2a, z). (123)

(3) Decoupling factors

14



(a)

H =
1
q
, K = 1, k =

H
K
=

1
q
, κ =

a1

qt
. (124)

(b)

H = − 1

1− a2
0t2
, K =

1
q

1

1− a2
0t2
, k =

H
K
= q, κ = a0t. (125)

(4) Identification

(a)

f =
1
κ

F
G
, F ∝ Φ(q2b,q2z), G ∝ Φ(b, z), (126)

with parameters given in eq.(110).

(b)

g =
1
κ

F
G
, F ∝ Ψ(a, z), G ∝ Ψ(a,q2z), (127)

with parameters given in eq.(113).

(5) Gauge factors

(a) Putting
F = θ(q2b, q2z)Φ(q2b,q2z), G = θ(b, z)Φ(b, z), (128)

we have:
θ(b,q2z)
θ(b, z)

= 1,
θ(q2b, z)
θ(b, z)

=
θ(q2b,q2z)
θ(b, z)

=
q

a0a1

1−
q2

a2
0a2

1


. (129)

(b) Putting
F = θ(a, z)Ψ(a, z), G = θ(a,q2z)Ψ(a,q2z), (130)

we have:
θ(q2a, z)
θ(a, z)

= 1,
θ(a,q2z)
θ(a, z)

=
θ(q2a,q2z)
θ(a, z)

=
1
b0
. (131)

3.5 Case of(A1 + A′1)
(1)

3.5.1 Equation and Solution

(1) q-Painlev́e equation [2, 3, 18]

( f f − 1)( f f − 1) =
at2 f
f + t
, t = qt. (132)

(2) Constraint on parameters
a = q. (133)

(3) Hypergeometric solution

f =
Φ(qt)
Φ(t)

, Φ = 1ϕ1

(
0
−q

; q,−qt

)
. (134)
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3.5.2 Data

(1) Riccati equation

f =
1
f
− qt. (135)

(2) Three-term relation
Φ(qt) + tΦ(t) = Φ(t/q). (136)

(3) Identification

f =
F
G
, F = Φ(qt), G = Φ(t). (137)

We note that there is no need to introduce decoupling and gauge factors.
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