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Abstract

Hypergeometric solutions to tligPainlee equations are constructed by direct linearization of disrcrete Riccati equa-
tions. The decoupling factors are explicitly determined so that the linear systems givecpisgrtergeometric equations.

1 Introduction

This article is a continuation of our previous work [1] on the hypergeometric solutions tpPlaénle\e equations in the
following degeneration diagram offme Weyl group symmetries [2, 3] :

A
Eél) - E(71) - Eél) - D,(Sl) - Agl) - (A2+A1)(1) - (AL + |a|2:114)(1) (1)

The list ofg-Painle\e equations we are going to investigate is given in section 3 below. We remark thatithaesgee
equations were discovered through various approaches to discrete Paigletions, including singularity confinement
analysis, compatibility conditions of linearftirence equationsffine Weyl group symmetries andfunctions on the
lattices. Also, in Sakai's framework [2], each of thep@ainlewe equations is constructed in a unified manner as the
birational action of a translation of the correspondifitne Weyl group on a certain family of rational surfaces.

In [4] we have introduced the formulation of discrete Paiglequations based on the geometry of plane curvé&3.on
On that basis we were able in the first part of [1] to find suitable coordinates for linearizationgPtuialee equations
into three-term relations of hypergeometric functions. As a result we obtained the following degeneration diagram of
basic hypergeometric functions corresponding to (1):

a . 7
1¥1 0 !qv 0

0 - 191 q ;q,Z)
1901( b ;q,Z)

This shows the usefulness of geometric consideration in the study of particular solutions of discrete é?piatens.

In order to determine explicit solutions to those equations written in the literature, further steps of precise computations
are required since the variables to be solved are fixed in advance. We have shown only the results for them in the secor
part of [1]. The purpose of this article is to present these explicit solutions including subtle gauge factors and to show the
calculation in detail based on the direct linearization of discrete Riccati equations.

balanced balanced
Wi - W — - 1 o 11 o
10V 32

This article is organized as follows: In section 2, we explain the procedure to construct hypergeometric solutions
through the linearization of discrete Riccati equations. We demonstrate this procedure by taking theEéHsazs(ﬂn
example. In section 3, we give the list gfPainle\e equations and their hypergeometric solutions, with the data that
are necessary for constructing solutions. Among the cases in the diagram (1) we have excluded th@é@asmmb a
complete identification of hypergeometric solutions has already been given in [5].



2 Construction of Hypergeometric Solutions

2.1 Discrete Riccati Equation and Its Linearization

The g-Painlee equations admit particular solutions characterized by discrete Riccati equations for special values of pa-
rameters. Reduction to discrete Riccati equation has been already done fogafdheee equations[3, 6, 7, 8]. We also
note that such special situations have clear geometrical meaning, as was discussed in [1]. The basic idea for constructir
hypergeometric solution is as follows: we linearize the discrete Riccati equations to yield second orderdiffeaence
equations. We then identify them with the three-term relation of an appropriate basic hypergeometric series.

Let us explain this procedure in detail. Suppose we have a discrete Riccati equation of the form

Az+ B

7=
Cz+D’

)

wherez = z(t) andz = z(qt). We also use the notatian= z(t/q), and so forth. Moreover, the cfieientsA, B, C andD
are functions of. First let us put an ansatz

F
= . 3
2= & 3)
Then the discrete Riccati equation is linearized to
F G
— =AF+B —=CF+D 4
a + BG, v CF + DG, (4)

whereH is an arbitrary decoupling factor. Eliminati&from eq.(4) we have foF the three-term relation
— H B
F+aF+cF=0 ¢ = _E(A—B+ BD), c;= EHﬂ@—@). (5)

The three-term relation for a basic hypergeometric series often takes the form
V(@ — @) + Vo + Va(@ — @) = 0, (6)

where the cofficientsVy, V, andV; are factorized into binomials involving the independent variable and parameters.
Comparing eqs.(5) with (6), we have
2 V3
—=1+Cc1+C, — =cCp 7
A +C1+C VA 2 (1)

We look for the decoupling factdd so that these quantities factorize. We then identify the three-term relation with that
for appropriate hypergeometric function. This is done by trial and error with the aid of computer algebra, but it is not
practically dificult since we already know the hypergeometric function and its three-term relation to appear for each
g-Painle\e equation.

Step 1.Find the decoupling factoH such that

V, V3
—=1+C1+C, — =0Cp 8
v 1+ =0 (8)

factorize. Then identify the three-term relation
Vi(F = F) + VoF + V3(F - F) = 0, 9)
with that for an appropriate hypergeometric function.

Similarly, we have foiG the three-term relation

G+diG+dG =0, &1=-g(09+cg), &zngﬂ@-gg. (10)



However, usually 3 d; + d, does not factorize fol obtained above. Replacit@with G (k = kk), we have

1F
_ H CHH
G+ahG+hG=0, = S(DC+CA, dh= - —(AD - EC) (12)

We then look fok so that 2+d; +d, factorizes, and identify eq.(12) with the three-term relation of the same hypergeometric
function asF with different parameters. Puttifdyk = K, this is equivalent to the follwing procedure:

Step 2.1n the three-term relation
= K C
G+dG+d,G=0, d;= —E(DQ +CA), d= EKK(AD - BC), (13)

find decoupling factoK so that
U, Us

—<=1+d;+dy, — =dy, 14
Us + 01+ 02 U, 2 (14)
factorize. Then identify the three-term relation with that for an appropriate hypergeometric function. Now we have
16D H K
z=-—, —=k -=Kk 15
Kk ¥ K K (15)

where® and¥ are some hypergeometric functions, @@ = 1, 2) are constants(gauge factors).
Finally we determine the gauge fact@isando,:
Step 3.Compare the linear relations,
0,® K6,

W = A01D + kB, Y,

= Co1D + kD6,?, (16)

with contiguity relations of the hypergeometric functions to determyrandgs.

2.2 AnExample: Case ofe!"

In this section we demonstrate the construction of the hypergeometric solutiongdPtialee equation of typeE(71) as
an example, following the procedure in the previous section.

Before proceeding, let us first summarize the definition and terminology of the basic hypergeometric series [9]. The
basic hypergeometric seriggs is given by

R RS B oo el G LR

;@n -+ (bs; An(Q; P 17
@ =(1-2a)(1-ga) - (1-q""a).
The basic hypergeometric serigsy; is calledbalanced if the condition
Qaqdz - @41 = bibp-- by, z=gq, (18)
is satisfied, and is callecery-well-poisedf the condition
Qag = ahy = = a1y, a= qal%’ ag = —qal%, (19)

1The “balancedy;” in the diagram (1) is due to the convention that was used in [10].



is satisfied. A very-well-poised hypergeometric sefigg, is denoted ag, ;W;:

1
,_qa1,a4,ar+l ’q’z] (20)
s0a1/ay, ..., ga1/ar41

R

ay,
raW(ag; s, .. ., 81130, 2) = r‘Ps[ 1.4

s

R
e

Now theg-Painlewe equation of typ(E(71) is given by [2, 3]

(fg-)(fg—t7) _ (f —bat)(f — bot)(f — bst)(f — but)
(fg-D(fg-1)  (f ~bs)(f —be)(f —by)(f ~bg)

oo oS- o3

L e e e

wheret is the independent variable abd(i = 1,.. ., 8) are parameters satisfying

t= qt, b1b2b3b4 =q, b5b6b7b8 =1 (22)
Proposition 2.1 [3, 6] In case ofb;bs = bsb7, eq.(21) admits a specialization to the discrete Riccati equation,

(tt - 1) + t{—(bs + be)t + (b + ba)
{06 + ) + (b + )t} T + bgbg(1— 1)’ (23)

fo (t? — 1)bsbrg + t{(by + bs) — (bs + by)t} (24)
- {tlor + bs) — (bs + b))} g+ (1-12)

As was pointed outin [1], in the caseslfgl{S the variables andg are not expressed by ratio of hypergeometric functions.
We choose the variableZs

g-t/by
zZ= . 25
9 1/bs (3)
Then the discrete Riccati equation (23) and (24) is rewritten as
5 Az+ B
T Cz+ D’
with
A = b1b5(—b3 + b5t)
X b4b6b8q2t3 + (b1b4b5 - bib5 - b1b4b6 - b1b4b8 - b5b6b8Q)qt2
+(b1b¢21 + babsbeq + babsbgq + b1bsbgq — babsbga)t — bybsbs |, (26)
B = —(by— bs)bZ(bibs — qbsbs)t(bs — bst)(-1 + qt?), (27)
C = —bZby(bs — be)(bs — bg)(bs — bst)(—1 + qt?), (28)
D = Dbibs(bs — bat)
x| —b1bsbsqt® + (b1 + babsbsq + babsbeq + bybsbgg — bsbsbs)t?
+(b1b4b5 - bibs - b1b4b6 - b1b4b8 - b5b5ng)t + b4b6b8 . (29)

2This variablez should be understood as a ratiordfinctions.



Step 1.We choose the decoupling factdras
1
™ qbubs(bst — bs) (1t — bs)(Dat — bg) (b4t — be)’
Then we have foF the three-term relation
Vi(F = F) + VoF + V3(F - F) = 0,

Vo bs(bs — bs)(bibs — gbsbg)(—1 + t)(1 + t)(-1 + qt?)
Vi q(bs — byt)(—be + bat)(~bg + bat)(~bs + bst)
Vs (bs — bst)(—by + bst)(—bs + bet)(—bs + bgt)(-1 + gt?)
Vi (bs — byt)(—be + bat)(—bg + bat)(=bs + bst)(-q + 1)
The three-term relation for the very-well-poised basic hypergeometric series
q’aj J

a1 dxazauas

H

D = gW, [aoi ay, 8, a3, &y, as; q,
is given by [11]
U1(® — @) + U@ + Us(@ — @) =0, D =@ logqaasasg L= Playagagw

w3222
T % ands /" agau)\T s

’ U3 = U1| ayeag»
& 92
% (1 a3) (1 as )
_ 9% g2

Comparing eqs.(31) with (33), we identifywith g\W; as

F 3W7(b1b8' abe % ﬁ % E-q bs).
Step 2.We choose the decoupling factdras
K= 1 .
b1bs(qbst — bs)(byt — bs)(bat — be) (st — bg)
Then we have foG the three-term relation
X1(G - G) + XoF + X3(G-G) = 0,
X2 _ bs(bs — ) (b1bs — bebg)(=1 + )(1 + t)(-1 + qt*)
X1 (bs — byt)(—be + bat)(—bg + bat)(—bs + gbst) °
X3 _ (abs — bst)(=b1 + bst)(=ba + bet)(=ba + bgt)(=1 + qt’)
X1 (bs — byt)(~be + bat)(—bg + bat)(~bs + gbst)(—q + ) -
Comparing egs.(36) with (33), we have

bibg bs bt by by bs qbs)
G W _;_3_’_9_5_; s . |-
s 7(b3b5 bs’ bs’ bst’ b bs’ ¥ bg

Moreover, fromk = H/K = (1 — bs/qbst)/(1 — bs/bst), we havex = 1 — bz/bst. Therefore we obtain
9 )
A1dazasas
q?a3 ] ’

diapazauas

8W7 (a01 qa17 aZa a3’ a47 a5! q7

Z <

bs
1- b_5t 8W7 (aO, ap, dp, az, a4, as; q,

5

(30)

(1)

(32)

(33)

(34)

(35)

(36)

(37)

(38)



with

Cbibg by bt b b, by a5 gbs

- b3b5’ a; = b5’ a = b5 > ag = bst’ = b3, a5 = b3, a18,832435 = b6 . (39)
Step 3.Let us put

F = 6(gay, ap, az)®(qay, ap, a3), G = 6(ay, ap, az)P(ay, ap, ag), (40)

whered(ay, ap, ag) is a gauge factor to be determined. Here, we have omitted the dependecayafndas, since they
are not relevant to the calculation. Then linear equations (16) yield

1 6(9a, g2, as/q) A 6(02q, 3, a)

HB  0(r. 3. 2) ©(qay, g2, 3s/0) = - 0(ay. 2. 50) D(qay, az, ag) + P(a1, @z, ag), (41)
and R o /o C o )
K 0lai, &, az/q _ L oQa, &, a3
respectively. Now, we have the contiguity relationsdoe gW- [11]
al(l_ aoq)(l_ aoq)(l_ aoq)
a3 a1a4 a1a5
aoq ®(a1/q, @, a3) - (al © az)
1-— (43)
a
PPN PR i
= (- &) (1 A18p0a0a0e O(ay, ap, ag),

(a2 — 1)(1 - @) ®(a1/0, qap, ag) + (1 - @) (1 - @) ®(ay, a, as)
a q a1

ag aoq
=laa—- —||1- — | D(a1/9, a, a3).
(2 q)( alaz) (a1/9, a2, as)
We denote egs.(43) and (44) as C&1p,, as] and CR2py, a, &3], respectively. Moreover, note that the relations

CR1[ay, a2, a3] and CR2py, &y, ag] hold for any permutation ody, a; andag, since these parameters are on equal footing
in® = gWh.

Now we eliminated(ay, az, az/q) from CR1fy, a3, a;] and CR2Bs, ap, a1]. Shifting a; to qa;, we have a linear rela-
tion amongd(ay, qap, az/q), ® (a1, &, as) andd(a;y /g, az, az), which should coincide with eq. (41). Similarly, eliminating
®d(qay, ap, az/q) from CR1[gay, ag, ax] and CR2pg, a1, ay], we have a linear relation amoni gay, ap, a3), (a1, ap, az)
and ®(ay, ap, az/q). Elimination further®(ay, ap, az/q) from this relation and CR2}, a, a;] yields a linear relation
amongd(ay, gap, az/q), P(qay, a2, ag) andd(ay, ay, az), which should coincide with eq.(42). From these calculations, we
find thatf(as, a, as) should satisfy

[-S)0-38) (-Sa)
0(a1, 92, 83/0) _ o aq/ bg beqt

(44)

0(a1, @, a3) - (1_ %)(1_ ﬂ) B (1_ @)(1_ &)’
ao aoQ bs bsqt (45)
0(Qa,a2,8) _, a _, bs
A(ay, ap, a3) ao by’
6(qay, qap, az/q) _ 6(as, qap, a3z/q) v 0(qa, 3, )
0(a, ap, az) 6(ay, a, ag) 6(au, a, ) ’
which yield
(3 asas 1) (@ b &)
a9’ a9 a9/, \qbs’ gbst’ qby ),
o(ay. 2. _ — . 46
(aq, a2, a3) (%ﬁ) (%ﬁ) (46)
aq " apq), qbs” qhst /.,



Therefore we arrive at the final result

1 6(gay, ap, az) P(gay, ay, as)

Z =
1- bs O(as, @, 83) O(a, &, &)
bst
bs . L 9% (47)
- = W y & N a; 5 a; s ) [ B}
) 1 br 8 7(30 qay, a, as, a4, a5; q 21880340
= be 7 .
1-— W|ag,a1,a, a3 a4 850 ———
b5t 8Vvvy (aO’ 1, A2, A3, a47 5 q7 a1a2a3a4a5

3 Hypergeometric Solutions

Hypergeometric solutions to othgfPainlee equations can be constructed by the same procedure as that was demon-
strated in the previous section. Instead of describing full procedure, we %ive a list of equations, solutions and the othel
data that are necessary for construction of solutions. We note that the ®$ i@bmitted as mentioned in the introduc-

tion.

3.1 Case oY
3.1.1 Equation and Solution
(1) g-Painlee equation [3, 6, 12]

(@st- f)(gst- f) - (P2 -1)E2-1) _ P(f.tm.....m)
[¢} g 1 1\ P(f,tLmy,...,m)’
& )& )t 2a) (- w2)

48
(fst-g)(fst-g) ~ (S - DEE 1) pgsmy,....my) (“8)
f f AT ~P(g,sLm,...,my)’
st I\st ™9 12 St?
where
P(f.t,my,...,my) = 4 —mtf3 + (mpt? — 3 - t8) 2 49)
+(myt” — mat® + 2mut) f + (8 — met® + myt* — mpt? + 1),
andm (k= 1,2,...7) are the elementary symmetric functionkeh degree irb; (i = 1,2,..., 8) with
biby---bg =1 (50)
Moreover, .
t=qt t=q°s (51)
(2) Constraint on parameters [6]
gbibsbsby = 1, bobsbgbs = q. (52)
(38) Hypergeometric solution
S by
9- |\t < 4, . 2 2
b, s O(q'a0; &1, 9°@y, . . ., q°ay)
zZ= =1 - , (53)
g[S 42 D(ao; 2y .- -, &)
bg S



where® is defined in terms of the balancefVy series by
®(ag; a1, .. ., a7) = 10We(ao; &1, . . ., az; &7, oF)
oPay
(q a09 ,q)w 6 (ak, ,Q) a_g.@

% 9. (qaoakwq) ? g(ao’ao
a7’a0’qoo a @

Here,a (i=0,1,...,7) anda are given by

= —1 a = —q2 ap = i
T2’ Tt bobet2’ T by’

b b

dedy

»",_a7q q

Qo

)

and
(1_%)(1_ b4b6)(1 bsbst?)(1 — bgbt2)(1 — b5b7t2)l—[ (1—%)
_ b1b4b5 1V8 i=2,4,6 1
b 2 2 ’
" sl e 2T kel 5
b, bsg b, bsg bg bg bibgs? 2357 b, b;
respectively.
3.1.2 Data
(1) Riccati equation
1 f g fg 1 f g fg
L fig g |_g |1 fo G5 05 |_
1 f3 g3 f30s 11 fo G feUs '
1 fs g5 fs05 1 fs Gy fa0,
where 1 b
—bti _sS.h
f'_b't+bit’ o] bi+S
The Riccati equation foz = % is given by
— U8
5 Az+ B
- Cz+D

B = — 3501301501 460
C = 4604506801358
D = —f35T46 1801301504508

A = AD — BC = fi13f3515f46 a8 f6801301503501804604806801 8

wherefij =fi - f]' and

1 f1 oo fion 1 1 g

d _ 1 f3 O3 f3g3 d _ 1 f4 §4
188711 fs gs fsgs |° 4687 | 1 fs Ty
1 f3 gs fa0s 1 fg G

respectively.

f10;
f20,
f60s
fg0s

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)



(2) Three-term and contiguity relations for hypergeometric function [13]

(8) Three-term relation .
Ul(q) - (D) + Uo® + Ug@— (D) =0,

where 5
au(1- ap) (1— @)(1— @)
a a
U; =
o?ay
(- )1—[( alaj)
_ LY . _
Uz = —(a1 — &) (1— @) 1]1(1— aj), Uz =Uilaca,,

@ = O(ag; a1/f, Pay, aa, . . ., a7), @ =®d(ag;q’ay, az/0% aa, ..., ay),
and® is defined by eq.(54).
(b) Contiguity relations

cI)(ao'al/q2 fay, as, ..., a7) — O(ag; a1, @2, a3, . . ., a;)
= Vi ©(g*a3; ar, Pay, . .., Pay),

Vo ©(q*a3; a1, 9Pap, oas, . . . , Pay) — Vs ©(q'a3; oay, ap, oas, . . . , ofay)

= V4 ®(ag; a1, @, a3, ..., a7),

where
2 a aa
o (1— quz)(l— 1—2)(1 o)l - q ao)l_[(l )
Vi= 2 4
- 52 - ) - )1 ) ] - 52
ai ai ay a i-3 a;
7 2
200 O
aj(1 az)]l (1 alaj)
VZ - V3 = V2|31<—>az7

j=3

V.
T - a)(l- gao)
(3) Decoupling factors
D f1g 1 1
H = — = — e K = = = = — =
A f1315f45 f68035018046018 D fas f46 f1801301504506s
so that _
‘e H _D?_ fas fas 5013015045065
K A fi3fi5fsses0s5046018
(4) Identification
.1 g F o O(q*ap; a1, GPap, ..., 0%a7), Go ®(agay....a7), K=Kk,

whereg, (i = 0,...,7) are given by eq.(55).

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)



(5) Gauge factors

Putting
F = 0(q*a0; a1, Pay, . . ., qPar)d(q*a0; a1, Gy, . . . , GPay),
G=6(aa....a7)P(a s ..., a),
we have:
0a0; 2 /0P, 2o, 37) _,  lo(da0i 2, P, GPar) _
(ao; a1 .. ., ay) S 6(ao; s .. ., ay) '
3.2 Case oY
3.2.1 Equation and Solution
(1) g-Painlee equation[3, 14, 15]
(fg-1)(fg—1) = ff (f = byt)(f — bot)(f — bi,t)(f - b4t)’
(f - b5t)(f - b_s)
o)l a2
b b b b
(fg-1)(fg-1) = 20—
(9 — bet) (g - b—ﬁ)
t= qt, bibobsbs = 1.
(2) Constraint on parameters [3, 15]
b1b, = bsbg.
(3) Hypergeometric solution
21 b
Z_g by by @(gab,c,d,e)
S g-thy | Dibobst o@bgcde)
bs
where® is the balancegy, series defined by
_ abc de
(D(av b7 C9d7 e) - 3¢2( d’e Ll 1 abc)’
with 052
az P b b2oobs, d=q—2, e= qbybobl.
t b, by
3.2.2 Data
(1) Riccati equation [3, 15]
bst
—(f-by-b
g~ Lt gy P =) ¢ _ 1+ Det(bgbag — bs — by)
f —ths ’ g-the '
The Riccati equation for
;-9 1/by
g- tbe ’

10

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)



is given by,
Az+ B

Cz+D’

A = bybs(bsbs — t)(bs — bybobst)(—b, + bsqt),

B = —bt(b1 — bs)(-1 + bibybs)(~b; + bsqy),

C = qthby(b1bz — bs)(b1by + bs)(bzbs — t)(—bs + bybabst),

D= —b5lb1b2b3b§ + (~b302bshs — b302bsbsq — bobsba)t

Z=

+(b30Z — b2b2bs + b?3b2 — byb2 + beb? + b3bybsh? + b2h2hsb2 — b2byh2b2 + b2h2bsb2q)qt2

~b{b30gbscPte |

(2) Three-term and contiguity relations for hypergeometric function [10]

(&) Three-term relation -
vl(q>—q>)+v2q>+v3(cp—9) =0,

where
a d e
Vlz(l—g)(l—a), Vo = (L= b)(1-c), v3=2(1—5)(1—5),
_ _ abec _de 5_ -
<I>—<D(a,b,c,d,e)—3soz( d.e ,q,Z), Z=bo O =Dly,ga, ©=

(b) Contiguity relations

(@a-c)®(a,b,c.d,e) + (1-a)d(ga b,c,d,e) - (1-c)®(a b,qcd,e) =0,

(a-c)(de-abgd(a,b,c,d,e) + b(d — a)(e— a)®@(a/qg. b, c,d, €)
—ab(d - c)(e—-c)®(a,b,c/q,d,e) = 0.

(3) Decoupling factors
1

"™ = bubgbs(bs + B2b51)(bs — bbabst)(bs — absD)’
K = 1
b1bsbs(—bs + b2bat)(bs — gbybzbst) (b, — gbst)’
H _ b5 — lebgbgt b1b2b3t

K= K™ De—bibabgt” <"1 b

(4) Identification

1F
k G’
wherea, ..., eare given by eq.(77).

zZ= F « ®(gab,c,d,e), G ®(ahb,qcd,e),

(5) Gauge factors
Putting

F =6(gab,c,d,e)®(qa b,c,d,e), G=06(ab,qcd,e)d(a b,qcd,e),

we have:
f@b.cde _6gabcde ., b d@aqbaqcde _

f6(a.b.qcd.e) 6ab.gcde ~ b’ 6@baqcde
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(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)



3.3 Case oiA}"
3.3.1 Equation and Solution
(1) g-Painlee equation [3]

99= 1+ agf
o2 2
ff = s as
- l+g/as
t=qt t=gqis
(2) Constraint on parameters [3] .
araa; =q 7.

(3) Hypergeometric solution

1 CD(a/l, s, Z) 1 ( ) @(qa/l Jay, Z)
- Y S I it o s 1L
ajast O(a1,qe2,2) a (a1, 02,2’

where® is the,y; series defined by

D(a1,a2,2) = 2¢1( @ a2 ;0 ),

with
a [0% a2 4 —t
1= "5, 2 = ’ = .
a2 ' aag

Note that the solution is also expressible in termggafseries by using the formula [16],

b )
2¢l( a’blq’z) ( Zq) 1¢l( ,q,aZ).

(@A
3.3.2 Data
(1) Riccati equation [3]
1-— 2
ag+ a f+ 1
§= ayt g=- agt
N %
&0 a% apast

(2) Three-term and contiguity relations for hypergeometric function
(8) Three-term relation

A2y (@- q>)+ Z1-a)1- az)q>+(a—1) (@ - @) =0,

where

’a =N
O(a1, a2,2) =2¢1( a2 10, ) Q= DQlpgs, L= Plisyg-
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(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)

(97)



(b) Contiguity relations

Plo,02.2) = 020(a1,02. 0 = (1 - 02) V(1. Goz. ), (98)
P(a1,02/G.2) — Plag, 02,2) = —C%Z(l — 1) O(der, @2, 2), (99)
a1a2Z D(a1, gz, 42 = ® — (1 — az2) O(a1, Gaz, 2). (100)
(3) Decoupling factors
Hz%, Ko 1 ’ k:ﬂzq, =t (101)
ey gazas K
(4) Identification
f= % g, F oc ®(ay,a2,2, G o« ®(ay,gaz,2), (102)

with parameters given in eq.(93).

(5) Gauge factors

Putting
F = 0(a1, a2, 2®(a1, @2,2), G =0(as, Qao, 2)D(ay, Qao, 2), (103)
we have: 6 ) o )
a1, @, q ay, qaz’ Z 2
- =1 ———=- . 104
9(0’1, a2, Z) 9(0!1, a?, Z) A8 ( )
3.4 Case ofA; + A))®
3.4.1 Equation and Solution
(1) g-Painlee equation [2, 3, 7, 8, 17]
a +9
_ 1+ agtf T -
fopy 200 ff=by —s—, t=qt 105

Eq. (105) admits two dierent specializations for hypergeometric solutions: (a) specializatibp(perameter of
A1), (b) specialization o (parameter of\,). See also [7, 8] for details.

(2) Constraint on parameters

(@)
bo =q. (106)
(b)
ady = Q. (107)
(3) Hypergeometric solution
@ a @ ) @02 ¢t 1 o(b.g%)
gszﬁ_zﬁ)ﬂﬁh# "Cad @ b (108)
aga;
where
O =d(b,2) = 1@1( 8 g 2), (109)
with
b=c?/agal, z=q’t?/al. (110)



(b)

_ b W@ _ . Yady

aot ¥(a, %2’ Y(@2 ’

where
a

¥=¥ad - § i

with
a=ait’, z=q/b.
3.4.2 Data

(1) Riccati equation

()
£ (aBa2/a-aBal?) f —aoqt
- aotf + 1 o 9= T
(b)
_ g- aobot
. . fg=—bo.
g 20tg — bo g o

(2) Three-term and contiguity relations for hypergeometric function

(@) (i) Three-term relation

g (@(b. ¢?2) - ©(b.2)) + (b 2) + q—: (@(b.z/q?) - @) = 0,

where
0
®(b,2) = 1¢1( b oak z).
(ii) Contiguity relations
b 2 b 2
o(b,2) - @rb(b,q 2)=|1- P ®(b/q%, 2),
2
a(0.2) - 0(b.2/P) = 28 w(c.2)

(b) (i) Three-term relation

(-5 (¥(dad - ¥@2) - 5¥a 2+ (/) - ¥a2)=0

where
¥(a,2) = 1901( g ;qz,Z).
(ii) Contiguity relations
¥(a,2) - a¥(a, 0’2 = (1- a)¥(q’a, 2.
¥(a.2) - ¥(a.2/cP) = (1 - a)q—zz ¥(cPa. 2).

(3) Decoupling factors
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(111)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)

(120)

(121)

(122)
(123)



(@)

H== K=1, k:ﬂ—}, KZi.
K g qt
(b)
1 1 1 K H ¢
= = — , =—=Qq, K=
1- a0 q1-ar K-+ KT
(4) ldentification
(a)
1F o 2
f==-—=, Fod(hqgz, Go«db,2,
k G
with parameters given in eq.(110).
(b)
1F 2
g:_a’ FOC\P(a’Z)’ GOC\P(aqu)’
K

with parameters given in eq.(113).

(5) Gauge factors

(a) Putting
F = 0(0°b, "2 ®(q°b.o’2), G = 6(b, 2D(b, 2),
we have:
0b.¢?2) _,  0(efb.2) _ 0(eb.o’D) _ q
6b,2) 7  60b,2  6b2 VRl
2o |1- 5
B
(b) Putting
F=6a2¥%@a2, G-=o6a2¥@a s,
we have:

s _, 0@y _odaqz 1
6(a,2) T 6(a2) 6(a, 2) bo’

3.5 Case ofA; + A)W
3.5.1 Equation and Solution

(1) g-Painlee equation [2, 3, 18]
2

— at-f _
(ff—1)(fi—1)_f—+t, t=qt

(2) Constraint on parameters

(3) Hypergeometric solution

15

(124)

(125)

(126)

(127)

(128)

(129)

(130)

(131)

(132)

(133)

(134)



3.5.2 Data

(1) Riccati equation

f= % -qt. (135)
(2) Three-term relation
@(qt) + td(t) = O(t/q). (136)
(3) Identification
f-f F- o(q), G = o(t). (137)

G 9
We note that there is no need to introduce decoupling and gauge factors.
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