# Construction of hypergeometric solutions to the q－Painlevé equations 

Kajiwara，Kenji<br>Faculty of Mathematics，Kyushu University｜School of Mathematics and Statistics F07， University of Sydney<br>Masuda，Tetsu<br>Department of Mathematics，Kobe University<br>Noumi，Masatoshi<br>Department of Mathematics，Kobe University<br>Ohta，Yasuhiro<br>Department of Mathematics，Kobe University<br>他

https：／／hdl．handle．net／2324／11848

出版情報：International Mathematics Research Notices．2005，pp．1439－1463，2005．Hindawi
Publishing Corporation
バージョン：
権利関係：The article has been accepted for publication in International Mathematics Research Notices（C）： 2005 Published by Hindawi Publishing Corporation．All rights reserved．

# MHF Preprint Series 

Kyushu University
21st Century COE Program
Development of Dynamic Mathematics with High Functionality

# Construction of hypergeometric solutions to the $q^{-}$Painlevé equations 

K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta, Y. Yamada

MHF 2005-6
( Received February 1, 2005 )

Faculty of Mathematics
Kyushu University
Fukuoka, JAPAN

# Construction of Hypergeometric Solutions to the $q$-Painlevé Equations 

K. Kajiwara ${ }^{1,3}$, T. Masuda ${ }^{2}$, M. Noumi ${ }^{2}$, Y. Ohta ${ }^{2}$ and Y. Yamada ${ }^{2}$<br>${ }^{1}$ Graduate School of Mathematics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan<br>${ }^{2}$ Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan<br>${ }^{3}$ School of Mathematics and Statistics F07, University of Sydney, Sydney, NSW 2006, Australia

January 30, 2005


#### Abstract

Hypergeometric solutions to the $q$-Painlevé equations are constructed by direct linearization of disrcrete Riccati equations. The decoupling factors are explicitly determined so that the linear systems give rise to $q$-hypergeometric equations.


## 1 Introduction

This article is a continuation of our previous work [1] on the hypergeometric solutions to the $q$-Painlevé equations in the following degeneration diagram of affine Weyl group symmetries [2, 3] :

$$
\begin{equation*}
E_{8}^{(1)} \rightarrow E_{7}^{(1)} \rightarrow E_{6}^{(1)} \rightarrow D_{5}^{(1)} \rightarrow A_{4}^{(1)} \rightarrow\left(A_{2}+A_{1}\right)^{(1)} \rightarrow\left(A_{1}+\underset{|\alpha|^{2}=14}{A_{1}}\right)^{(1)} \tag{1}
\end{equation*}
$$

The list of $q$-Painlevé equations we are going to investigate is given in section 3 below. We remark that these $q$-Painlevé equations were discovered through various approaches to discrete Painlevé equations, including singularity confinement analysis, compatibility conditions of linear difference equations, affine Weyl group symmetries and $\tau$-functions on the lattices. Also, in Sakai's framework [2], each of these $q$-Painlevé equations is constructed in a unified manner as the birational action of a translation of the corresponding affine Weyl group on a certain family of rational surfaces.

In [4] we have introduced the formulation of discrete Painlevé equations based on the geometry of plane curves on $\mathbb{P}^{2}$. On that basis we were able in the first part of [1] to find suitable coordinates for linearization of the $q$-Painlevé equations into three-term relations of hypergeometric functions. As a result we obtained the following degeneration diagram of basic hypergeometric functions corresponding to (1):

$$
\left.\begin{array}{ccccccc}
\text { balanced } \\
{ }_{10} W_{9}
\end{array} \rightarrow{ }_{8} W_{7} \rightarrow \begin{array}{c}
\text { balanced } \\
{ }_{3} \varphi_{2}
\end{array} \rightarrow{ }_{2 \varphi_{1}} \rightarrow{ }_{1} \varphi_{1} \rightarrow \begin{array}{l}
\varphi_{1}\left(\begin{array}{l}
a \\
0
\end{array} ; q, z\right) \\
{ }_{1} \varphi_{1}\left(\begin{array}{l}
0 \\
b
\end{array} ; q, z\right.
\end{array}\right) \rightarrow{ }_{1} \varphi_{1}\left(\begin{array}{c}
0 \\
-q
\end{array} ; q, z\right)
$$

This shows the usefulness of geometric consideration in the study of particular solutions of discrete Painleé equations. In order to determine explicit solutions to those equations written in the literature, further steps of precise computations are required since the variables to be solved are fixed in advance. We have shown only the results for them in the second part of [1]. The purpose of this article is to present these explicit solutions including subtle gauge factors and to show the calculation in detail based on the direct linearization of discrete Riccati equations.

This article is organized as follows: In section 2, we explain the procedure to construct hypergeometric solutions through the linearization of discrete Riccati equations. We demonstrate this procedure by taking the case of $E_{7}^{(1)}$ as an example. In section 3, we give the list of $q$-Painlevé equations and their hypergeometric solutions, with the data that are necessary for constructing solutions. Among the cases in the diagram (1) we have excluded the case of $D_{5}^{(1)}$, since a complete identification of hypergeometric solutions has already been given in [5].

## 2 Construction of Hypergeometric Solutions

### 2.1 Discrete Riccati Equation and Its Linearization

The $q$-Painlevé equations admit particular solutions characterized by discrete Riccati equations for special values of parameters. Reduction to discrete Riccati equation has been already done for all the $q$-Painlevé equations[3, 6, 7, 8]. We also note that such special situations have clear geometrical meaning, as was discussed in [1]. The basic idea for constructing hypergeometric solution is as follows: we linearize the discrete Riccati equations to yield second order linear $q$-difference equations. We then identify them with the three-term relation of an appropriate basic hypergeometric series.

Let us explain this procedure in detail. Suppose we have a discrete Riccati equation of the form

$$
\begin{equation*}
\bar{z}=\frac{A z+B}{C z+D} \tag{2}
\end{equation*}
$$

where $z=z(t)$ and $\bar{z}=z(q t)$. We also use the notation $\underline{z}=z(t / q)$, and so forth. Moreover, the coefficients $A, B, C$ and $D$ are functions of $t$. First let us put an ansatz

$$
\begin{equation*}
z=\frac{F}{G} . \tag{3}
\end{equation*}
$$

Then the discrete Riccati equation is linearized to

$$
\begin{equation*}
\frac{\bar{F}}{H}=A F+B G, \quad \frac{\bar{G}}{H}=C F+D G \tag{4}
\end{equation*}
$$

where $H$ is an arbitrary decoupling factor. Eliminating $G$ from eq.(4) we have for $F$ the three-term relation

$$
\begin{equation*}
\bar{F}+c_{1} F+c_{2} \underline{F}=0, \quad c_{1}=-\frac{H}{\underline{B}}(A \underline{B}+B \underline{D}), \quad c_{2}=\frac{B}{\underline{B}} H \underline{H}(\underline{A D}-\underline{B C}) . \tag{5}
\end{equation*}
$$

The three-term relation for a basic hypergeometric series often takes the form

$$
\begin{equation*}
V_{1}(\bar{\Phi}-\Phi)+V_{2} \Phi+V_{3}(\underline{\Phi}-\Phi)=0 \tag{6}
\end{equation*}
$$

where the coefficients $V_{1}, V_{2}$ and $V_{3}$ are factorized into binomials involving the independent variable and parameters. Comparing eqs.(5) with (6), we have

$$
\begin{equation*}
\frac{V_{2}}{V_{1}}=1+c_{1}+c_{2}, \quad \frac{V_{3}}{V_{2}}=c_{2} \tag{7}
\end{equation*}
$$

We look for the decoupling factor $H$ so that these quantities factorize. We then identify the three-term relation with that for appropriate hypergeometric function. This is done by trial and error with the aid of computer algebra, but it is not practically difficult since we already know the hypergeometric function and its three-term relation to appear for each $q$-Painlevé equation.

Step 1. Find the decoupling factor $H$ such that

$$
\begin{equation*}
\frac{V_{2}}{V_{1}}=1+c_{1}+c_{2}, \quad \frac{V_{3}}{V_{2}}=c_{2} \tag{8}
\end{equation*}
$$

factorize. Then identify the three-term relation

$$
\begin{equation*}
V_{1}(\bar{F}-F)+V_{2} F+V_{3}(\underline{F}-F)=0 \tag{9}
\end{equation*}
$$

with that for an appropriate hypergeometric function.
Similarly, we have for $G$ the three-term relation

$$
\begin{equation*}
\bar{G}+\tilde{d}_{1} G+\tilde{d}_{2} \underline{G}=0, \quad \tilde{d}_{1}=-\frac{H}{\underline{C}}(D \underline{C}+C \underline{A}), \quad \tilde{d}_{2}=\frac{C}{\underline{C}} H \underline{H}(\underline{A D}-\underline{B C}) . \tag{10}
\end{equation*}
$$

However, usually $1+\tilde{d}_{1}+\tilde{d}_{2}$ does not factorize for $H$ obtained above. Replacing $G$ with $\kappa G(\bar{\kappa}=k \kappa)$, we have

$$
\begin{gather*}
z=\frac{1}{\kappa} \frac{F}{G},  \tag{11}\\
\bar{G}+d_{1} G+d_{2} \underline{G}=0, \quad d_{1}=-\frac{H}{k \underline{C}}(\underline{D}+C \underline{A}), \quad d_{2}=\frac{C}{\bar{C}} \underline{H} \frac{H}{k \underline{ }}(\underline{A D}-\underline{B C}) . \tag{12}
\end{gather*}
$$

We then look for $k$ so that $1+d_{1}+d_{2}$ factorizes, and identify eq.(12) with the three-term relation of the same hypergeometric function as $F$ with different parameters. Putting $H / k=K$, this is equivalent to the follwing procedure:

Step 2. In the three-term relation

$$
\begin{equation*}
\bar{G}+d_{1} G+d_{2} \underline{G}=0, \quad d_{1}=-\frac{K}{\underline{C}}(D \underline{C}+C \underline{A}), \quad d_{2}=\frac{C}{\underline{C}} K \underline{K}(\underline{A D}-\underline{B C}), \tag{13}
\end{equation*}
$$

find decoupling factor $K$ so that

$$
\begin{equation*}
\frac{U_{2}}{U_{1}}=1+d_{1}+d_{2}, \quad \frac{U_{3}}{U_{2}}=d_{2} \tag{14}
\end{equation*}
$$

factorize. Then identify the three-term relation with that for an appropriate hypergeometric function. Now we have

$$
\begin{equation*}
z=\frac{1}{\kappa} \frac{\theta_{1} \Phi}{\theta_{2} \Psi}, \quad \frac{H}{K}=k, \quad \frac{\bar{\kappa}}{\kappa}=k \tag{15}
\end{equation*}
$$

where $\Phi$ and $\Psi$ are some hypergeometric functions, and $\theta_{i}(i=1,2)$ are constants(gauge factors).
Finally we determine the gauge factors $\theta_{1}$ and $\theta_{2}$ :
Step 3. Compare the linear relations,

$$
\begin{equation*}
\frac{\theta_{1} \bar{\Phi}}{H}=A \theta_{1} \Phi+\kappa B \theta_{2} \Psi, \quad \frac{\bar{\kappa} \theta_{2} \bar{\Psi}}{H}=C \theta_{1} \Phi+\kappa D \theta_{2} \Psi, \tag{16}
\end{equation*}
$$

with contiguity relations of the hypergeometric functions to determine $\theta_{1}$ and $\theta_{2}$.

### 2.2 An Example: Case of $E_{7}^{(1)}$

In this section we demonstrate the construction of the hypergeometric solution to the $q$-Painlevé equation of type $E_{7}^{(1)}$ as an example, following the procedure in the previous section.

Before proceeding, let us first summarize the definition and terminology of the basic hypergeometric series [9]. The basic hypergeometric series $r \varphi_{s}$ is given by

$$
\begin{gather*}
{ }_{r}\left(\begin{array}{c}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; q, z\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1} ; q\right)_{n} \cdots\left(a_{r} ; q\right)_{n}}{\left(b_{1} ; q\right)_{n} \cdots\left(b_{s} ; q\right)_{n}(q ; q)_{n}}\left[(-1)^{n} q^{\binom{n}{2}}\right]^{1+s-r} z^{n},  \tag{17}\\
(a ; q)_{n}=(1-a)(1-q a) \cdots\left(1-q^{n-1} a\right) .
\end{gather*}
$$

The basic hypergeometric series ${ }_{r+1} \varphi_{r}$ is called balanced ${ }^{1}$ if the condition

$$
\begin{equation*}
q a_{1} a_{2} \cdots a_{r+1}=b_{1} b_{2} \cdots b_{r}, \quad z=q \tag{18}
\end{equation*}
$$

is satisfied, and is called very-well-poised if the condition

$$
\begin{equation*}
q a_{1}=a_{2} b_{1}=\cdots=a_{r+1} b_{r}, \quad a_{2}=q a_{1}^{\frac{1}{2}}, \quad a_{3}=-q a_{1}^{\frac{1}{2}}, \tag{19}
\end{equation*}
$$

[^0]is satisfied. A very-well-poised hypergeometric series ${ }_{r+1} \varphi_{r}$ is denoted as ${ }_{r+1} W_{r}$ :
\[

{ }_{r+1} W_{r}\left(a_{1} ; a_{4}, ···, a_{r+1} ; q, z\right)={ }_{r} \varphi_{s}\left($$
\begin{array}{c}
a_{1}, q a_{1}^{\frac{1}{2}},-q a_{1}^{\frac{1}{2}}, a_{4} \ldots, a_{r+1}  \tag{20}\\
a_{1}^{\frac{1}{2}},-a_{1}^{\frac{1}{2}}, q a_{1} / a_{4}, \ldots, q a_{1} / a_{r+1}
\end{array}
$$ ; q, z\right) .
\]

Now the $q$-Painlevé equation of type $E_{7}^{(1)}$ is given by $[2,3]$

$$
\begin{align*}
& \frac{(f \bar{g}-\bar{t} t)\left(f g-t^{2}\right)}{(f \bar{g}-1)(f g-1)}=\frac{\left(f-b_{1} t\right)\left(f-b_{2} t\right)\left(f-b_{3} t\right)\left(f-b_{4} t\right)}{\left(f-b_{5}\right)\left(f-b_{6}\right)\left(f-b_{7}\right)\left(f-b_{8}\right)}, \\
& \frac{\left(f g-t^{2}\right)(f g-t \underline{t})}{(f g-1)(\underline{f g}-1)}=\frac{\left(g-\frac{t}{b_{1}}\right)\left(g-\frac{t}{b_{2}}\right)\left(g-\frac{t}{b_{3}}\right)\left(g-\frac{t}{b_{4}}\right)}{\left(g-\frac{1}{b_{5}}\right)\left(g-\frac{1}{b_{6}}\right)\left(g-\frac{1}{b_{7}}\right)\left(g-\frac{1}{b_{8}}\right)}, \tag{21}
\end{align*}
$$

where $t$ is the independent variable and $b_{i}(i=1, \ldots, 8)$ are parameters satisfying

$$
\begin{equation*}
\bar{t}=q t, \quad b_{1} b_{2} b_{3} b_{4}=q, \quad b_{5} b_{6} b_{7} b_{8}=1 . \tag{22}
\end{equation*}
$$

Proposition 2.1 [3, 6] In case of $b_{1} b_{3}=b_{5} b_{7}$, eq.(21) admits a specialization to the discrete Riccati equation,

$$
\begin{align*}
\bar{g} & =\frac{(t \bar{t}-1) f+t\left\{-\left(b_{6}+b_{8}\right) \bar{t}+\left(b_{2}+b_{4}\right)\right\}}{\left\{-\left(b_{6}+b_{8}\right)+\left(b_{2}+b_{4}\right) t\right\} f+b_{6} b_{8}(1-t \bar{t})}  \tag{23}\\
f & =\frac{\left(t^{2}-1\right) b_{5} b_{7} g+t\left\{\left(b_{1}+b_{3}\right)-\left(b_{5}+b_{7}\right) t\right\}}{\left\{t\left(b_{1}+b_{3}\right)-\left(b_{5}+b_{7}\right)\right\} g+\left(1-t^{2}\right)} \tag{24}
\end{align*}
$$

As was pointed out in [1], in the cases of $E_{6,7,8}^{(1)}$ the variables $f$ and $g$ are not expressed by ratio of hypergeometric functions. We choose the variable as ${ }^{2}$

$$
\begin{equation*}
z=\frac{g-t / b_{1}}{g-1 / b_{5}} . \tag{25}
\end{equation*}
$$

Then the discrete Riccati equation (23) and (24) is rewritten as

$$
\bar{z}=\frac{A z+B}{C z+D}
$$

with

$$
\begin{align*}
A= & b_{1} b_{5}\left(-b_{3}+b_{5} t\right) \\
& \times\left[b_{4} b_{6} b_{8} q^{2} t^{3}+\left(b_{1} b_{4} b_{5}-b_{4}^{2} b_{5}-b_{1} b_{4} b_{6}-b_{1} b_{4} b_{8}-b_{5} b_{6} b_{8} q\right) q t^{2}\right. \\
& \left.+\left(b_{1} b_{4}^{2}+b_{4} b_{5} b_{6} q+b_{4} b_{5} b_{8} q+b_{1} b_{6} b_{8} q-b_{4} b_{6} b_{8} q\right) t-b_{1} b_{4} b_{5}\right],  \tag{26}\\
B= & -\left(b_{1}-b_{4}\right) b_{5}^{2}\left(b_{1} b_{4}-q b_{6} b_{8}\right) t\left(b_{5}-b_{3} t\right)\left(-1+q t^{2}\right),  \tag{27}\\
C= & -b_{1}^{2} b_{4}\left(b_{5}-b_{6}\right)\left(b_{5}-b_{8}\right)\left(b_{3}-b_{5} t\right)\left(-1+q t^{2}\right),  \tag{28}\\
D= & b_{1} b_{5}\left(b_{5}-b_{3} t\right) \\
& \times\left[-b_{1} b_{4} b_{5} q t^{3}+\left(b_{1} b_{4}^{2}+b_{4} b_{5} b_{6} q+b_{4} b_{5} b_{8} q+b_{1} b_{6} b_{8} q-b_{4} b_{6} b_{8} q\right) t^{2}\right. \\
& \left.+\left(b_{1} b_{4} b_{5}-b_{4}^{2} b_{5}-b_{1} b_{4} b_{6}-b_{1} b_{4} b_{8}-b_{5} b_{6} b_{8} q\right) t+b_{4} b_{6} b_{8}\right] . \tag{29}
\end{align*}
$$

[^1]Step 1. We choose the decoupling factor $H$ as

$$
\begin{equation*}
H=\frac{1}{q b_{1} b_{5}\left(b_{5} t-b_{3}\right)\left(b_{1} t-b_{5}\right)\left(b_{4} t-b_{6}\right)\left(b_{4} t-b_{8}\right)} . \tag{30}
\end{equation*}
$$

Then we have for $F$ the three-term relation

$$
\begin{align*}
& V_{1}(\bar{F}-F)+V_{2} F+V_{3}(\underline{F}-F)=0 \\
& \frac{V_{2}}{V_{1}}=\frac{b_{5}\left(b_{3}-b_{4}\right)\left(b_{1} b_{4}-q b_{6} b_{8}\right)(-1+t)(1+t)\left(-1+q t^{2}\right)}{q\left(b_{5}-b_{1} t\right)\left(-b_{6}+b_{4} t\right)\left(-b_{8}+b_{4} t\right)\left(-b_{3}+b_{5} t\right)}  \tag{31}\\
& \frac{V_{3}}{V_{1}}=\frac{\left(b_{5}-b_{3} t\right)\left(-b_{1}+b_{5} t\right)\left(-b_{4}+b_{6} t\right)\left(-b_{4}+b_{8} t\right)\left(-1+q t^{2}\right)}{\left(b_{5}-b_{1} t\right)\left(-b_{6}+b_{4} t\right)\left(-b_{8}+b_{4} t\right)\left(-b_{3}+b_{5} t\right)\left(-q+t^{2}\right)}
\end{align*}
$$

The three-term relation for the very-well-poised basic hypergeometric series

$$
\begin{equation*}
\Phi={ }_{8} W_{7}\left(a_{0} ; a_{1}, a_{2}, a_{3}, a_{4}, a_{5} ; q, \frac{q^{2} a_{0}^{2}}{a_{1} a_{2} a_{3} a_{4} a_{5}}\right), \tag{32}
\end{equation*}
$$

is given by [11]

$$
\begin{align*}
& U_{1}(\bar{\Phi}-\Phi)+U_{2} \Phi+U_{3}(\underline{\Phi}-\Phi)=0, \quad \bar{\Phi}=\left.\Phi\right|_{a_{2} \rightarrow q a_{2}, a_{3} \rightarrow a_{3} / q}, \quad \underline{\Phi}=\left.\Phi\right|_{a_{2} \rightarrow a_{2} / q, a_{3} \rightarrow q a_{3}} \\
& U_{1}=\frac{\left(1-a_{2}\right)\left(1-\frac{a_{0}}{a_{2}}\right)\left(1-\frac{q a_{0}}{a_{2}}\right)\left(1-\frac{q a_{0}}{a_{1} a_{3}}\right)\left(1-\frac{q a_{0}}{a_{3} a_{4}}\right)\left(1-\frac{q a_{0}}{a_{3} a_{5}}\right)}{a_{3}\left(1-\frac{a_{2}}{a_{3}}\right)\left(1-\frac{q a_{2}}{a_{3}}\right)}, \quad U_{3}=\left.U_{1}\right|_{a_{2} \leftrightarrow a_{3}}  \tag{33}\\
& U_{2}=\frac{q a_{0}^{2}}{a_{1} a_{2} a_{3} a_{4} a_{5}}\left(1-\frac{q a_{0}}{a_{2} a_{3}}\right)\left(1-a_{1}\right)\left(1-a_{4}\right)\left(1-a_{5}\right)
\end{align*}
$$

Comparing eqs.(31) with (33), we identify $F$ with ${ }_{8} W_{7}$ as

$$
\begin{equation*}
F \propto_{8} W_{7}\left(\frac{b_{1} b_{8}}{b_{3} b_{5}} ; \frac{q b_{8}}{b_{5}}, \frac{b_{1} t}{b_{5}}, \frac{b_{1}}{b_{5} t}, \frac{b_{2}}{b_{3}}, \frac{b_{4}}{b_{3}} ; q, \frac{b_{5}}{b_{6}}\right) \tag{34}
\end{equation*}
$$

Step 2. We choose the decoupling factor $K$ as

$$
\begin{equation*}
K=\frac{1}{b_{1} b_{5}\left(q b_{5} t-b_{3}\right)\left(b_{1} t-b_{5}\right)\left(b_{4} t-b_{6}\right)\left(b_{4} t-b_{8}\right)} . \tag{35}
\end{equation*}
$$

Then we have for $G$ the three-term relation

$$
\begin{align*}
& X_{1}(\bar{G}-G)+X_{2} F+X_{3}(\underline{G}-G)=0 \\
& \frac{X_{2}}{X_{1}}=\frac{b_{5}\left(b_{3}-b_{4}\right)\left(b_{1} b_{4}-b_{6} b_{8}\right)(-1+t)(1+t)\left(-1+q t^{2}\right)}{\left(b_{5}-b_{1} t\right)\left(-b_{6}+b_{4} t\right)\left(-b_{8}+b_{4} t\right)\left(-b_{3}+q b_{5} t\right)}  \tag{36}\\
& \frac{X_{3}}{X_{1}}=\frac{\left(q b_{5}-b_{3} t\right)\left(-b_{1}+b_{5} t\right)\left(-b_{4}+b_{6} t\right)\left(-b_{4}+b_{8} t\right)\left(-1+q t^{2}\right)}{\left(b_{5}-b_{1} t\right)\left(-b_{6}+b_{4} t\right)\left(-b_{8}+b_{4} t\right)\left(-b_{3}+q b_{5} t\right)\left(-q+t^{2}\right)}
\end{align*}
$$

Comparing eqs.(36) with (33), we have

$$
\begin{equation*}
G \propto{ }_{8} W_{7}\left(\frac{b_{1} b_{8}}{b_{3} b_{5}} ; \frac{b_{8}}{b_{5}}, \frac{b_{1} t}{b_{5}}, \frac{b_{1}}{b_{5} t}, \frac{b_{2}}{b_{3}}, \frac{b_{4}}{b_{3}} ; q, \frac{q b_{5}}{b_{6}}\right) . \tag{37}
\end{equation*}
$$

Moreover, from $k=H / K=\left(1-b_{3} / q b_{5} t\right) /\left(1-b_{3} / b_{5} t\right)$, we have $\kappa=1-b_{3} / b_{5} t$. Therefore we obtain

$$
\begin{equation*}
z \propto \frac{1}{1-\frac{b_{3}}{b_{5} t}} \frac{{ }_{8} W_{7}\left(a_{0} ; q a_{1}, a_{2}, a_{3}, a_{4}, a_{5} ; q, \frac{q a_{0}^{2}}{a_{1} a_{2} a_{3} a_{4} a_{5}}\right)}{{ }_{8} W_{7}\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5} ; q, \frac{q^{2} a_{0}^{2}}{a_{1} a_{2} a_{3} a_{4} a_{5}}\right)} \tag{38}
\end{equation*}
$$

with

$$
\begin{equation*}
a_{0}=\frac{b_{1} b_{8}}{b_{3} b_{5}}, \quad a_{1}=\frac{b_{8}}{b_{5}}, \quad a_{2}=\frac{b_{1} t}{b_{5}}, \quad a_{3}=\frac{b_{1}}{b_{5} t}, \quad a_{4}=\frac{b_{2}}{b_{3}}, \quad a_{5}=\frac{b_{4}}{b_{3}}, \quad \frac{q^{2} a_{0}^{2}}{a_{1} a_{2} a_{3} a_{4} a_{5}}=\frac{q b_{5}}{b_{6}} . \tag{39}
\end{equation*}
$$

Step 3. Let us put

$$
\begin{equation*}
F=\theta\left(q a_{1}, a_{2}, a_{3}\right) \Phi\left(q a_{1}, a_{2}, a_{3}\right), \quad G=\theta\left(a_{1}, a_{2}, a_{3}\right) \Phi\left(a_{1}, a_{2}, a_{3}\right), \tag{40}
\end{equation*}
$$

where $\theta\left(a_{1}, a_{2}, a_{3}\right)$ is a gauge factor to be determined. Here, we have omitted the dependence of $a_{0}, a_{4}$ and $a_{5}$, since they are not relevant to the calculation. Then linear equations (16) yield

$$
\begin{equation*}
\frac{1}{\kappa H B} \frac{\theta\left(q a_{1}, q a_{2}, a_{3} / q\right)}{\theta\left(a_{1}, a_{2}, a_{3}\right)} \Phi\left(q a_{1}, q a_{2}, a_{3} / q\right)=\frac{A}{\kappa B} \frac{\theta\left(q a_{1}, a_{2}, a_{3}\right)}{\theta\left(a_{1}, a_{2}, a_{3}\right)} \Phi\left(q a_{1}, a_{2}, a_{3}\right)+\Phi\left(a_{1}, a_{2}, a_{3}\right), \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\bar{\kappa}}{\kappa H D} \frac{\theta\left(a_{1}, q a_{2}, a_{3} / q\right)}{\theta\left(a_{1}, a_{2}, a_{3}\right)} \Phi\left(a_{1}, q a_{2}, a_{3} / q\right)=\frac{C}{\kappa D} \frac{\theta\left(q a_{1}, a_{2}, a_{3}\right)}{\theta\left(a_{1}, a_{2}, a_{3}\right)} \Phi\left(q a_{1}, a_{2}, a_{3}\right)+\Phi\left(a_{1}, a_{2}, a_{3}\right), \tag{42}
\end{equation*}
$$

respectively. Now, we have the contiguity relations for $\Phi={ }_{8} W_{7}$ [11]

$$
\begin{align*}
& \frac{a_{1}\left(1-\frac{a_{0} q}{a_{1} a_{3}}\right)\left(1-\frac{a_{0} q}{a_{1} a_{4}}\right)\left(1-\frac{a_{0} q}{a_{1} a_{5}}\right)}{1-\frac{a_{0} q}{a_{1}}} \Phi\left(a_{1} / q, a_{2}, a_{3}\right)-\left(a_{1} \leftrightarrow a_{2}\right)  \tag{43}\\
& =\left(a_{1}-a_{2}\right)\left(1-\frac{a_{0}^{2} q^{2}}{a_{1} a_{2} a_{3} a_{4} a_{5}}\right) \Phi\left(a_{1}, a_{2}, a_{3}\right), \\
& \left(a_{2}-1\right)\left(1-\frac{a_{0}}{a_{2}}\right) \Phi\left(a_{1} / q, q a_{2}, a_{3}\right)+\left(1-\frac{a_{1}}{q}\right)\left(1-\frac{a_{0} q}{a_{1}}\right) \Phi\left(a_{1}, a_{2}, a_{3}\right)  \tag{44}\\
& =\left(a_{2}-\frac{a_{1}}{q}\right)\left(1-\frac{a_{0} q}{a_{1} a_{2}}\right) \Phi\left(a_{1} / q, a_{2}, a_{3}\right) .
\end{align*}
$$

We denote eqs.(43) and (44) as CR1 $\left[a_{1}, a_{2}, a_{3}\right]$ and $\operatorname{CR} 2\left[a_{1}, a_{2}, a_{3}\right]$, respectively. Moreover, note that the relations $\operatorname{CR} 1\left[a_{1}, a_{2}, a_{3}\right]$ and CR2 $\left[a_{1}, a_{2}, a_{3}\right]$ hold for any permutation of $a_{1}, a_{2}$ and $a_{3}$, since these parameters are on equal footing in $\Phi={ }_{8} W_{7}$.

Now we eliminate $\Phi\left(a_{1}, a_{2}, a_{3} / q\right)$ from CR1 $\left[a_{1}, a_{3}, a_{2}\right]$ and CR2 $\left[a_{3}, a_{2}, a_{1}\right]$. Shifting $a_{1}$ to $q a_{1}$, we have a linear relation among $\Phi\left(a_{1}, q a_{2}, a_{3} / q\right), \Phi\left(a_{1}, a_{2}, a_{3}\right)$ and $\Phi\left(a_{1} / q, a_{2}, a_{3}\right)$, which should coincide with eq. (41). Similarly, eliminating $\Phi\left(q a_{1}, a_{2}, a_{3} / q\right)$ from CR1 $\left[q a_{1}, a_{3}, a_{2}\right]$ and CR2 $\left[a_{3}, a_{1}, a_{2}\right]$, we have a linear relation among $\Phi\left(q a_{1}, a_{2}, a_{3}\right), \Phi\left(a_{1}, a_{2}, a_{3}\right)$ and $\Phi\left(a_{1}, a_{2}, a_{3} / q\right)$. Elimination further $\Phi\left(a_{1}, a_{2}, a_{3} / q\right)$ from this relation and CR2[a3, $\left.a_{2}, a_{1}\right]$ yields a linear relation among $\Phi\left(a_{1}, q a_{2}, a_{3} / q\right), \Phi\left(q a_{1}, a_{2}, a_{3}\right)$ and $\Phi\left(a_{1}, a_{2}, a_{3}\right)$, which should coincide with eq.(42). From these calculations, we find that $\theta\left(a_{1}, a_{2}, a_{3}\right)$ should satisfy

$$
\begin{align*}
& \frac{\theta\left(a_{1}, q a_{2}, a_{3} / q\right)}{\theta\left(a_{1}, a_{2}, a_{3}\right)}=\frac{\left(1-\frac{a_{2}}{a_{0}}\right)\left(1-\frac{a_{3} a_{5}}{a_{0} q}\right)}{\left(1-\frac{a_{2} a_{5}}{a_{0}}\right)\left(1-\frac{a_{3}}{a_{0} q}\right)}=\frac{\left(1-\frac{b_{3} t}{b_{8}}\right)\left(1-\frac{b_{4}}{b_{8} q t}\right)}{\left(1-\frac{b_{4} t}{b_{8}}\right)\left(1-\frac{b_{3}}{b_{8} q t}\right)}  \tag{45}\\
& \frac{\theta\left(q a_{1}, a_{2}, a_{3}\right)}{\theta\left(a_{1}, a_{2}, a_{3}\right)}=1-\frac{a_{1}}{a_{0}}=1-\frac{b_{3}}{b_{1}} \\
& \frac{\theta\left(q a_{1}, q a_{2}, a_{3} / q\right)}{\theta\left(a_{1}, a_{2}, a_{3}\right)}=\frac{\theta\left(a_{1}, q a_{2}, a_{3} / q\right)}{\theta\left(a_{1}, a_{2}, a_{3}\right)} \times \frac{\theta\left(q a_{1}, a_{2}, a_{3}\right)}{\theta\left(a_{1}, a_{2}, a_{3}\right)}
\end{align*}
$$

which yield

$$
\begin{equation*}
\theta\left(a_{1}, a_{2}, a_{3}\right)=\frac{\left(\frac{a_{2}}{a_{0} q}, \frac{a_{3} a_{5}}{a_{0} q}, \frac{a_{1}}{a_{0} q}\right)_{\infty}}{\left(\frac{a_{2} a_{5}}{a q}, \frac{a_{3}}{a_{0} q}\right)_{\infty}}=\frac{\left(\frac{b_{3} t}{q b_{8}}, \frac{b_{4}}{q b_{8} t}, \frac{b_{3}}{q b_{1}}\right)_{\infty}}{\left(\frac{b_{4} t}{q b_{8}}, \frac{b_{3}}{q b_{8} t}\right)_{\infty}} \tag{46}
\end{equation*}
$$

Therefore we arrive at the final result

$$
\begin{align*}
z & =\frac{1}{1-\frac{b_{3}}{b_{5} t}} \frac{\theta\left(q a_{1}, a_{2}, a_{3}\right)}{\theta\left(a_{1}, a_{2}, a_{3}\right)} \frac{\Phi\left(q a_{1}, a_{2}, a_{3}\right)}{\Phi\left(a_{1}, a_{2}, a_{3}\right)} \\
& =\frac{1-\frac{b_{3}}{b_{1}}}{1-\frac{b_{3}}{b_{5} t}} \frac{{ }_{8} W_{7}\left(a_{0} ; q a_{1}, a_{2}, a_{3}, a_{4}, a_{5} ; q, \frac{q a_{0}^{2}}{a_{1} a_{2} a_{3} a_{4} a_{5}}\right)}{{ }_{3}\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5} ; q, \frac{q^{2} a_{0}^{2}}{a_{1} a_{2} a_{3} a_{4} a_{5}}\right)} . \tag{47}
\end{align*}
$$

## 3 Hypergeometric Solutions

Hypergeometric solutions to other $q$-Painlevé equations can be constructed by the same procedure as that was demonstrated in the previous section. Instead of describing full procedure, we give a list of equations, solutions and the other data that are necessary for construction of solutions. We note that the case of $D_{5}^{(1)}$ is omitted as mentioned in the introduction.

### 3.1 Case of $E_{8}^{(1)}$

### 3.1.1 Equation and Solution

(1) $q$-Painlevé equation $[3,6,12]$

$$
\begin{align*}
& \frac{(\bar{g} s t-f)(g s t-f)-\left(\bar{s}^{2} t^{2}-1\right)\left(s^{2} t^{2}-1\right)}{\left(\frac{\bar{g}}{\bar{s} t}-f\right)\left(\frac{g}{s t}-f\right)-\left(1-\frac{1}{\bar{s}^{2} t^{2}}\right)\left(1-\frac{1}{s^{2} t^{2}}\right)}=\frac{P\left(f, t, m_{1}, \ldots, m_{7}\right)}{P\left(f, t^{-1}, m_{7}, \ldots, m_{1}\right)}, \\
& \frac{(\underline{f} \underline{s t}-g)(f s t-g)-\left(s^{2} \underline{t}^{2}-1\right)\left(s^{2} t^{2}-1\right)}{\left(\frac{f}{\overline{s t}}-g\right)\left(\frac{f}{s t}-g\right)-\left(1-\frac{1}{s^{2} \underline{t}^{2}}\right)\left(1-\frac{1}{s^{2} t^{2}}\right)}=\frac{P\left(g, s, m_{7}, \ldots, m_{1}\right)}{P\left(g, s^{-1}, m_{1}, \ldots, m_{7}\right)}, \tag{48}
\end{align*}
$$

where

$$
\begin{align*}
P\left(f, t, m_{1}, \ldots, m_{7}\right)= & f^{4}-m_{1} t f^{3}+\left(m_{2} t^{2}-3-t^{8}\right) f^{2} \\
& +\left(m_{7} t^{7}-m_{3} t^{3}+2 m_{1} t\right) f+\left(t^{8}-m_{6} t^{6}+m_{4} t^{4}-m_{2} t^{2}+1\right), \tag{49}
\end{align*}
$$

and $m_{k}(k=1,2, \ldots 7)$ are the elementary symmetric functions of $k$-th degree in $b_{i}(i=1,2, \ldots, 8)$ with

$$
\begin{equation*}
b_{1} b_{2} \cdots b_{8}=1 \tag{50}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\bar{t}=q t, t=q^{\frac{1}{2}} s . \tag{51}
\end{equation*}
$$

(2) Constraint on parameters [6]

$$
\begin{equation*}
q b_{1} b_{3} b_{5} b_{7}=1, \quad b_{2} b_{4} b_{6} b_{8}=q . \tag{52}
\end{equation*}
$$

(3) Hypergeometric solution

$$
\begin{equation*}
z=\frac{g-\left(\frac{s}{b_{1}}+\frac{b_{1}}{s}\right)}{g-\left(\frac{s}{b_{8}}+\frac{b_{8}}{s}\right)}=\lambda \frac{\Phi\left(q^{4} a_{0} ; a_{1}, q^{2} a_{2}, \ldots, q^{2} a_{7}\right)}{\Phi\left(a_{0} ; a_{1} \ldots, a_{7}\right)} \tag{53}
\end{equation*}
$$

where $\Phi$ is defined in terms of the balanced ${ }_{10} W_{9}$ series by

$$
\begin{align*}
& \Phi\left(a_{0} ; a_{1}, \ldots, a_{7}\right)={ }_{10} W_{9}\left(a_{0} ; a_{1}, \ldots, a_{7} ; q^{2}, q^{2}\right) \\
& +\frac{\left(q^{2} a_{0}, \frac{a_{7}}{a_{0}} ; q^{2}\right)_{\infty}}{\left(\frac{a_{0}}{a_{7}}, \frac{q^{2} a_{7}^{2}}{a_{0}} ; q^{2}\right)_{\infty}^{6}} \prod_{k=1}^{6} \frac{\left(a_{k}, \frac{q^{2} a_{7}}{a_{k}} ; q^{2}\right)_{\infty}}{\left(\frac{q^{2} a_{0}}{a_{k}}, \frac{a_{k} a_{7}}{a_{0}} ; q^{2}\right)_{\infty}{ }_{10} W_{9}\left(\frac{a_{7}^{2}}{a_{0}} ; \frac{a_{1} a_{7}}{a_{0}}, \ldots, \frac{a_{6} a_{7}}{a_{0}}, a_{7} ; q^{2}, q^{2}\right) .} \tag{54}
\end{align*}
$$

Here, $a_{i}(i=0,1, \ldots, 7)$ and $\lambda$ are given by

$$
\begin{align*}
& a_{0}=\frac{1}{q b_{1} b_{2} b_{8}^{2}}, \quad a_{1}=\frac{q^{2}}{b_{2} b_{8} t^{2}}, \quad a_{2}=\frac{s^{2}}{b_{2} b_{8}},  \tag{55}\\
& a_{i}=\frac{b_{i}}{b_{8}}(i=3,5,7), \quad a_{i}=\frac{b_{i}}{b_{1}}(i=4,6),
\end{align*}
$$

and

$$
\begin{equation*}
\lambda=\frac{b_{1} b_{4} b_{6}}{b_{8} s^{2}} \frac{\left(1-\frac{b_{4} b_{6}}{b_{1} b_{8}}\right)\left(1-q^{2} \frac{b_{4} b_{6}}{b_{1} b_{8}}\right)\left(1-b_{3} b_{5} t^{2}\right)\left(1-b_{3} b_{7} t^{2}\right)\left(1-b_{5} b_{7} t^{2}\right) \prod_{i=2,4,6}\left(1-\frac{b_{i}}{b_{1}}\right)}{\left(1-\frac{s^{2}}{b_{1} b_{8}}\right)\left(1-\frac{q^{2} s^{2}}{b_{1} b_{8}}\right)\left(1-\frac{b_{4}}{b_{8}}\right)\left(1-\frac{b_{6}}{b_{8}}\right)\left(1-\frac{q}{b_{1} b_{8} s^{2}}\right) \prod_{i=3,5,7}\left(1-\frac{b_{4} b_{6}}{b_{1} b_{i}}\right)}, \tag{56}
\end{equation*}
$$

respectively.

### 3.1.2 Data

(1) Riccati equation

$$
\left|\begin{array}{cccc}
1 & f & g & f g  \tag{57}\\
1 & f_{1} & g_{1} & f_{1} g_{1} \\
1 & f_{3} & g_{3} & f_{3} g_{3} \\
1 & f_{5} & g_{5} & f_{5} g_{5}
\end{array}\right|=0, \quad\left|\begin{array}{cccc}
1 & f & \bar{g} & f \bar{g}^{\prime} \\
1 & f_{8} & \bar{g}_{8} & f_{8} \bar{g}_{8} \\
1 & f_{6} & \bar{g}_{6} & f_{6} \bar{g}_{6} \\
1 & f_{4} & \bar{g}_{4} & f_{4} \bar{g}_{4}
\end{array}\right|=0,
$$

where

$$
\begin{equation*}
f_{i}=b_{i} t+\frac{1}{b_{i} t}, \quad g_{i}=\frac{s}{b_{i}}+\frac{b_{i}}{s} . \tag{58}
\end{equation*}
$$

The Riccati equation for $z=\frac{g-g_{1}}{g-g_{8}}$ is given by

$$
\begin{equation*}
\bar{z}=\frac{A z+B}{C z+D}, \tag{59}
\end{equation*}
$$

$$
\begin{align*}
& B=-f_{35} g_{13} g_{15} d_{1468}^{\prime}, \\
& C=f_{46} \bar{g}_{48} \bar{g}_{68} d_{1358},  \tag{60}\\
& D=-f_{35} f_{46} f_{18} g_{13} g_{15} \bar{g}_{48} \bar{g}_{68}, \\
& \Delta=A D-B C=f_{13} f_{35} f_{15} f_{46} f_{48} f_{68} g_{13} g_{15} g_{35} g_{18} \bar{g}_{46} \bar{g}_{48} \bar{g}_{68} \bar{g}_{18},
\end{align*}
$$

where $f_{i j}=f_{i}-f_{j}$ and

$$
d_{1358}=\left|\begin{array}{cccc}
1 & f_{1} & g_{1} & f_{1} g_{1}  \tag{61}\\
1 & f_{3} & g_{3} & f_{3} g_{3} \\
1 & f_{5} & g_{5} & f_{5} g_{5} \\
1 & f_{8} & g_{8} & f_{8} g_{8}
\end{array}\right|, \quad d_{1468}^{\prime}=\left|\begin{array}{cccc}
1 & f_{1} & \bar{g}_{1} & f_{1} \bar{g}_{1} \\
1 & f_{4} & \bar{g}_{4} & f_{4} \bar{g}_{4} \\
1 & f_{6} & \bar{g}_{6} & f_{6} \bar{g}_{6} \\
1 & f_{8} & \bar{g}_{8} & f_{8} \bar{g}_{8}
\end{array}\right|,
$$

respectively.
(2) Three-term and contiguity relations for hypergeometric function [13]
(a) Three-term relation

$$
\begin{equation*}
U_{1}(\bar{\Phi}-\Phi)+U_{2} \Phi+U_{3}(\underline{\Phi}-\Phi)=0 \tag{62}
\end{equation*}
$$

where

$$
\begin{gather*}
U_{1}=\frac{a_{1}\left(1-a_{2}\right)\left(1-\frac{a_{0}}{a_{2}}\right)\left(1-\frac{q^{2} a_{0}}{a_{2}}\right)}{\left(1-\frac{q^{2} a_{2}}{a_{1}}\right) \prod_{j=3}^{7}\left(1-\frac{q^{2} a_{0}}{a_{1} a_{j}}\right)},  \tag{63}\\
U_{2}=-\left(a_{1}-a_{2}\right)\left(1-\frac{q^{2} a_{0}}{a_{1} a_{2}}\right) \prod_{j=3}^{7}\left(1-a_{j}\right), \quad U_{3}=\left.U_{1}\right|_{a_{1} \leftrightarrow a_{2}}, \\
\bar{\Phi}=\Phi\left(a_{0} ; a_{1} / q^{2}, q^{2} a_{2}, a_{3}, \ldots, a_{7}\right), \quad \Phi=\Phi\left(a_{0} ; q^{2} a_{1}, a_{2} / q^{2}, a_{3}, \ldots, a_{7}\right), \tag{64}
\end{gather*}
$$

and $\Phi$ is defined by eq.(54).
(b) Contiguity relations

$$
\begin{align*}
& \Phi\left(a_{0} ; a_{1} / q^{2}, q^{2} a_{2}, a_{3}, \ldots, a_{7}\right)-\Phi\left(a_{0} ; a_{1}, a_{2}, a_{3}, \ldots, a_{7}\right) \\
& =V_{1} \Phi\left(q^{4} a_{0}^{2} ; a_{1}, q^{2} a_{2}, \ldots, q^{2} a_{7}\right)  \tag{65}\\
& V_{2} \Phi\left(q^{4} a_{0}^{2} ; a_{1}, q^{2} a_{2}, q^{2} a_{3}, \ldots, q^{2} a_{7}\right)-V_{3} \Phi\left(q^{4} a_{0}^{2} ; q^{2} a_{1}, a_{2}, q^{2} a_{3}, \ldots, q^{2} a_{7}\right) \\
& =V_{4} \Phi\left(a_{0} ; a_{1}, a_{2}, a_{3}, \ldots, a_{7}\right) \tag{66}
\end{align*}
$$

where

$$
\begin{aligned}
& V_{1}=\frac{\frac{q^{2} a_{0}}{a_{2}}\left(1-\frac{q^{2} a_{2}}{a_{1}}\right)\left(1-\frac{a_{1} a_{2}}{q^{2} a_{0}}\right)\left(1-q^{2} a_{0}\right)\left(1-q^{4} a_{0}\right) \prod_{j=3}^{7}\left(1-a_{j}\right)}{\left(1-\frac{q^{2} a_{0}}{a_{1}}\right)\left(1-\frac{q^{4} a_{0}}{a_{1}}\right)\left(1-\frac{a_{0}}{a_{2}}\right)\left(1-\frac{q^{2} a_{0}}{a_{2}}\right) \prod_{j=3}^{7}\left(1-\frac{q^{2} a_{0}}{a_{j}}\right)}, \\
& V_{2}=\frac{a_{1}^{2}\left(1-a_{2}\right) \prod_{j=3}^{7}\left(1-\frac{q^{2} a_{0}}{a_{1} a_{j}}\right)}{\left(1-\frac{q^{2} a_{0}}{a_{1}}\right)\left(1-\frac{q^{4} a_{0}}{a_{1}}\right)}, \quad V_{3}=\left.V_{2}\right|_{a_{1} \leftrightarrow a_{2}}, \\
& V_{4}=\frac{a_{1}\left(1-\frac{a_{2}}{a_{1}}\right) \prod_{j=3}^{7}\left(1-\frac{q^{2} a_{0}}{a_{j}}\right)}{\left(1-q^{2} a_{0}\right)\left(1-q^{4} a_{0}\right)} .
\end{aligned}
$$

(3) Decoupling factors

$$
\begin{equation*}
H=\frac{D}{\Delta}=-\frac{f_{18}}{f_{13} f_{15} f_{48} f_{68} g_{35} g_{18} \bar{g}_{46} \bar{g}_{18}}, \quad K=\frac{1}{D}=-\frac{1}{f_{35} f_{46} f_{18} g_{13} g_{15} \bar{g}_{48} \bar{g}_{68}} \tag{68}
\end{equation*}
$$

so that

$$
\begin{equation*}
k=\frac{H}{K}=\frac{D^{2}}{\Delta}=\frac{f_{35} f_{46} f_{18}^{2} g_{13} g_{15} \bar{g}_{48} \bar{g}_{68}}{f_{13} f_{15} f_{48} f_{68} g_{35} \bar{g}_{46} \bar{g}_{18}} \tag{69}
\end{equation*}
$$

(4) Identification

$$
\begin{equation*}
z=\frac{1}{\kappa} \frac{F}{G}, \quad F \propto \Phi\left(q^{4} a_{0} ; a_{1}, q^{2} a_{2}, \ldots, q^{2} a_{7}\right), \quad G \propto \Phi\left(a_{0} ; a_{1} \ldots, a_{7}\right), \quad \bar{\kappa}=k \kappa, \tag{70}
\end{equation*}
$$

where $a_{i}(i=0, \ldots, 7)$ are given by eq.(55).
(5) Gauge factors

Putting

$$
\begin{align*}
& F=\theta\left(q^{4} a_{0} ; a_{1}, q^{2} a_{2}, \ldots, q^{2} a_{7}\right) \Phi\left(q^{4} a_{0} ; a_{1}, q^{2} a_{2}, \ldots, q^{2} a_{7}\right), \\
& G=\theta\left(a_{0} ; a_{1} \ldots, a_{7}\right) \Phi\left(a_{0} ; a_{1} \ldots, a_{7}\right), \tag{71}
\end{align*}
$$

we have:

$$
\begin{equation*}
\frac{\theta\left(a_{0} ; a_{1} / q^{2}, a_{2} q^{2}, \ldots, a_{7}\right)}{\theta\left(a_{0} ; a_{1} \ldots, a_{7}\right)}=1, \quad \frac{1}{\kappa} \frac{\theta\left(q^{4} a_{0} ; a_{1}, q^{2} a_{2}, \ldots, q^{2} a_{7}\right)}{\theta\left(a_{0} ; a_{1} \ldots, a_{7}\right)}=\lambda . \tag{72}
\end{equation*}
$$

### 3.2 Case of $E_{6}^{(1)}$

### 3.2.1 Equation and Solution

(1) $q$-Painlevé equation $[3,14,15]$

$$
\begin{aligned}
& (f \bar{g}-1)(f g-1)=t \bar{t} \frac{\left(f-b_{1} t\right)\left(f-b_{2} t\right)\left(f-b_{3} t\right)\left(f-b_{4} t\right)}{\left(f-b_{5} t\right)\left(f-\frac{t}{b_{5}}\right)}, \\
& (f g-1)(\underline{f} g-1)=t^{2} \frac{\left(g-\frac{1}{b_{1}}\right)\left(g-\frac{1}{b_{2}}\right)\left(g-\frac{1}{b_{3}}\right)\left(g-\frac{1}{b_{4}}\right)}{\left(g-b_{6} t\right)\left(g-\frac{t}{b_{6}}\right)}, \\
& \bar{t}=q t, \quad b_{1} b_{2} b_{3} b_{4}=1 .
\end{aligned}
$$

(2) Constraint on parameters $[3,15]$

$$
\begin{equation*}
b_{1} b_{2}=b_{5} b_{6} . \tag{74}
\end{equation*}
$$

(3) Hypergeometric solution

$$
\begin{equation*}
z=\frac{g-\frac{1}{b_{1}}}{g-t b_{6}}=\frac{1-\frac{b_{3}}{b_{1}}}{1-\frac{b_{1} b_{2} b_{3} t}{b_{5}}} \frac{\Phi(q a, b, c, d, e)}{\Phi(a, b, q c, d, e)}, \tag{75}
\end{equation*}
$$

where $\Phi$ is the balanced $3 \varphi_{2}$ series defined by

$$
\Phi(a, b, c, d, e)={ }_{3} \varphi_{2}\left(\begin{array}{c}
a, b, c  \tag{76}\\
d, e
\end{array} ; q, \frac{d e}{a b c}\right),
$$

with

$$
\begin{equation*}
a=\frac{b_{3} b_{5}}{t}, \quad b=\frac{b_{3}}{b_{2}}, \quad c=b_{1}^{2} b_{2} b_{3}, \quad d=q \frac{b_{3} b_{5}^{2}}{b_{2}}, \quad e=q b_{1} b_{2} b_{3}^{2} . \tag{77}
\end{equation*}
$$

### 3.2.2 Data

(1) Riccati equation $[3,15]$

$$
\begin{equation*}
\bar{g}=\frac{1+\frac{b_{5} \bar{t}}{b_{1} b_{2}}\left(f-b_{1}-b_{3}\right)}{f-\bar{t} b_{5}}, \quad f=\frac{1+b_{6} t\left(b_{3} b_{4} g-b_{3}-b_{4}\right)}{g-t b_{6}} . \tag{78}
\end{equation*}
$$

The Riccati equation for

$$
\begin{equation*}
z=\frac{g-1 / b_{1}}{g-t b_{6}}, \tag{79}
\end{equation*}
$$

is given by,

$$
\bar{z}=\frac{A z+B}{C z+D},
$$

$$
\begin{align*}
A & =b_{1} b_{5}\left(b_{3} b_{5}-t\right)\left(b_{5}-b_{1} b_{2} b_{3} t\right)\left(-b_{2}+b_{5} q t\right), \\
B & =-b_{5}^{2} t\left(b_{1}-b_{3}\right)\left(-1+b_{1}^{2} b_{2} b_{3}\right)\left(-b_{2}+b_{5} q t\right), \\
C & =q t b_{1}\left(b_{1} b_{2}-b_{5}\right)\left(b_{1} b_{2}+b_{5}\right)\left(b_{3} b_{5}-t\right)\left(-b_{5}+b_{1} b_{2} b_{3} t\right), \\
D & =-b_{5}\left[b_{1} b_{2} b_{3} b_{5}^{2}+\left(-b_{1}^{3} b_{2}^{2} b_{3} b_{5}-b_{1}^{3} b_{2}^{2} b_{3} b_{5} q-b_{2} b_{3} b_{5}^{3} q\right) t\right.  \tag{80}\\
& +\left(b_{1}^{3} b_{2}^{2}-b_{1}^{2} b_{2}^{2} b_{3}+b_{1}^{4} b_{2}^{3} b_{3}^{2}-b_{1} b_{5}^{2}+b_{3} b_{5}^{2}+b_{1}^{3} b_{2} b_{3} b_{5}^{2}+b_{1}^{2} b_{2}^{2} b_{3} b_{5}^{2}-b_{1}^{2} b_{2} b_{3}^{2} b_{5}^{2}+b_{1}^{2} b_{2}^{2} b_{3} b_{5}^{2} q\right) q t^{2} \\
& \left.-b_{1}^{4} b_{2}^{3} b_{3} b_{5} q^{2} t^{3}\right] .
\end{align*}
$$

(2) Three-term and contiguity relations for hypergeometric function [10]
(a) Three-term relation

$$
\begin{equation*}
V_{1}(\bar{\Phi}-\Phi)+V_{2} \Phi+V_{3}(\Phi-\underline{\Phi})=0, \tag{81}
\end{equation*}
$$

where

$$
\begin{align*}
& V_{1}=\left(1-\frac{q}{z}\right)(1-a), \quad V_{2}=(1-b)(1-c), \quad V_{3}=\frac{a}{z}\left(1-\frac{d}{a}\right)\left(1-\frac{e}{a}\right), \\
& \Phi=\Phi(a, b, c, d, e)={ }_{3} \varphi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} ; q ; z\right), \quad z=\frac{d e}{a b c}, \quad \bar{\Phi}=\left.\Phi\right|_{a \rightarrow q a}, \quad \underline{\Phi}=\left.\Phi\right|_{a \rightarrow a / q} . \tag{82}
\end{align*}
$$

(b) Contiguity relations

$$
\begin{align*}
& (a-c) \Phi(a, b, c, d, e)+(1-a) \Phi(q a, b, c, d, e)-(1-c) \Phi(a, b, q c, d, e)=0,  \tag{83}\\
& (a-c)(d e-a b c) \Phi(a, b, c, d, e)+b c(d-a)(e-a) \Phi(a / q, b, c, d, e) \\
& -a b(d-c)(e-c) \Phi(a, b, c / q, d, e)=0 . \tag{84}
\end{align*}
$$

(3) Decoupling factors

$$
\begin{align*}
H & =\frac{1}{b_{1} b_{3} b_{5}\left(-b_{5}+b_{1}^{2} b_{2} t\right)\left(b_{5}-b_{1} b_{2} b_{3} t\right)\left(b_{2}-q b_{5} t\right)}, \\
K & =\frac{1}{b_{1} b_{3} b_{5}\left(-b_{5}+b_{1}^{2} b_{2} t\right)\left(b_{5}-q b_{1} b_{2} b_{3} t\right)\left(b_{2}-q b_{5} t\right)},  \tag{85}\\
k & =\frac{H}{K}=\frac{b_{5}-q b_{1} b_{2} b_{3} t}{b_{5}-b_{1} b_{2} b_{3} t}, \quad \kappa=1-\frac{b_{1} b_{2} b_{3} t}{b_{5}} .
\end{align*}
$$

(4) Identification

$$
\begin{equation*}
z=\frac{1}{\kappa} \frac{F}{G}, \quad F \propto \Phi(q a, b, c, d, e), \quad G \propto \Phi(a, b, q c, d, e), \tag{86}
\end{equation*}
$$

where $a, \ldots, e$ are given by eq.(77).
(5) Gauge factors

Putting

$$
\begin{equation*}
F=\theta(q a, b, c, d, e) \Phi(q a, b, c, d, e), \quad G=\theta(a, b, q c, d, e) \Phi(a, b, q c, d, e), \tag{87}
\end{equation*}
$$

we have:

$$
\begin{equation*}
\frac{\theta(a, b, c, d, e)}{\theta(a, b, q c, d, e)}=\frac{\theta(q a, b, c, d, e)}{\theta(a, b, q c, d, e)}=1-\frac{b_{3}}{b_{1}}, \quad \frac{\theta(a / q, b, q c, d, e)}{\theta(a, b, q c, d, e)}=1 . \tag{8}
\end{equation*}
$$

### 3.3 Case of $A_{4}^{(1)}$

### 3.3.1 Equation and Solution

(1) $q$-Painlevé equation [3]

$$
\begin{align*}
& \bar{g} g=\frac{\left(f+\frac{a_{1}}{t}\right)\left(f+\frac{1}{a_{1} t}\right)}{1+a_{3} f}, \\
& f \underline{f}=\frac{\left(g+\frac{a_{2}}{s}\right)\left(g+\frac{1}{a_{2} s}\right)}{1+g / a_{3}}, \tag{89}
\end{align*}
$$

$$
\bar{t}=q t, \quad t=q^{\frac{1}{2}} s .
$$

(2) Constraint on parameters [3]

$$
\begin{equation*}
a_{1} a_{2} a_{3}^{2}=q^{-\frac{1}{2}} . \tag{90}
\end{equation*}
$$

(3) Hypergeometric solution

$$
\begin{equation*}
g=-\frac{1}{a_{1} a_{3}^{2} t} \frac{\Phi\left(\alpha_{1}, \alpha_{2}, z\right)}{\Phi\left(\alpha_{1}, q \alpha_{2}, z\right)}, \quad f=\frac{1}{a_{3}}\left(1-\frac{1}{a_{2}^{2}}\right) \frac{\Phi\left(q \alpha_{1}, q \alpha_{2}, z\right)}{\Phi\left(\alpha_{1}, q \alpha_{2}, z\right)}, \tag{91}
\end{equation*}
$$

where $\Phi$ is the ${ }_{2} \varphi_{1}$ series defined by

$$
\Phi\left(\alpha_{1}, \alpha_{2}, z\right)={ }_{2} \phi_{1}\left(\begin{array}{c}
\alpha_{1}, \alpha_{2}  \tag{92}\\
0
\end{array} q, z\right),
$$

with

$$
\begin{equation*}
\alpha_{1}=\frac{1}{a_{2}^{2}}, \quad \alpha_{2}=a_{1}^{2}, \quad z=\frac{t}{a_{1} a_{3}} . \tag{93}
\end{equation*}
$$

Note that the solution is also expressible in terms of ${ }_{1} \phi_{1}$ series by using the formula [16],

$$
{ }_{2} \phi_{1}\left(\begin{array}{c}
a, b  \tag{94}\\
0
\end{array} ; q, z\right)=\frac{(b z ; q)_{\infty}}{(z ; q)_{\infty}}{ }_{1} \phi_{1}\left(\begin{array}{c}
b \\
b z
\end{array} ; q, a z\right) .
$$

### 3.3.2 Data

(1) Riccati equation [3]

$$
\begin{equation*}
\bar{g}=\frac{a_{3}^{2} g+\frac{1-a_{1}^{2}}{a_{1} t}}{-a_{3} g+\left(\frac{1}{a_{3}^{2}}-\frac{1}{a_{1} a_{3} t}\right)}, \quad g=-\frac{f+\frac{1}{a_{1} t}}{a_{3}^{2}} . \tag{95}
\end{equation*}
$$

(2) Three-term and contiguity relations for hypergeometric function
(a) Three-term relation

$$
\begin{equation*}
\frac{\alpha_{1} \alpha_{2}}{q} z(\bar{\Phi}-\Phi)+\frac{z}{q}\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right) \Phi+\left(\frac{z}{q}-1\right)(\underline{\Phi}-\Phi)=0 \tag{96}
\end{equation*}
$$

where

$$
\Phi\left(\alpha_{1}, \alpha_{2}, z\right)={ }_{2} \phi_{1}\left(\begin{array}{c}
\alpha_{1}, \alpha_{2}  \tag{97}\\
0
\end{array} ; q, z\right), \quad \bar{\Phi}=\left.\Phi\right|_{z \rightarrow q z}, \quad \underline{\Phi}=\left.\Phi\right|_{z \rightarrow z / q} .
$$

(b) Contiguity relations

$$
\begin{align*}
& \Phi\left(\alpha_{1}, \alpha_{2}, z\right)-\alpha_{2} \Phi\left(\alpha_{1}, \alpha_{2}, q z\right)=\left(1-\alpha_{2}\right) \Phi\left(\alpha_{1}, q \alpha_{2}, z\right)  \tag{98}\\
& \Phi\left(\alpha_{1}, \alpha_{2} / q, z\right)-\Phi\left(\alpha_{1}, \alpha_{2}, z\right)=-\frac{\alpha_{2} z}{q}\left(1-\alpha_{1}\right) \Phi\left(q \alpha_{1}, \alpha_{2}, z\right),  \tag{99}\\
& \alpha_{1} \alpha_{2} z \Phi\left(\alpha_{1}, q \alpha_{2}, q z\right)=\Phi-\left(1-\alpha_{2} z\right) \Phi\left(\alpha_{1}, q \alpha_{2}, z\right) \tag{100}
\end{align*}
$$

(3) Decoupling factors

$$
\begin{equation*}
H=\frac{1}{a_{1}^{2} a_{3}^{2}}, \quad K=\frac{1}{q a_{1}^{2} a_{3}^{2}}, \quad k=\frac{H}{K}=q, \quad \kappa=t . \tag{101}
\end{equation*}
$$

(4) Identification

$$
\begin{equation*}
f=\frac{1}{\kappa} \frac{F}{G}, \quad F \propto \Phi\left(\alpha_{1}, \alpha_{2}, z\right), \quad G \propto \Phi\left(\alpha_{1}, q \alpha_{2}, z\right), \tag{102}
\end{equation*}
$$

with parameters given in eq.(93).
(5) Gauge factors

Putting

$$
\begin{equation*}
F=\theta\left(\alpha_{1}, \alpha_{2}, z\right) \Phi\left(\alpha_{1}, \alpha_{2}, z\right), \quad G=\theta\left(\alpha_{1}, q \alpha_{2}, z\right) \Phi\left(\alpha_{1}, q \alpha_{2}, z\right), \tag{103}
\end{equation*}
$$

we have:

$$
\begin{equation*}
\frac{\theta\left(\alpha_{1}, \alpha_{2}, q z\right)}{\theta\left(\alpha_{1}, \alpha_{2}, z\right)}=1, \quad \frac{\theta\left(\alpha_{1}, q \alpha_{2}, z\right)}{\theta\left(\alpha_{1}, \alpha_{2}, z\right)}=-a_{1} a_{3}^{2} . \tag{104}
\end{equation*}
$$

3.4 Case of $\left(A_{2}+A_{1}\right)^{(1)}$

### 3.4.1 Equation and Solution

(1) $q$-Painlevé equation $[2,3,7,8,17]$

$$
\begin{equation*}
\bar{g} g f=b_{0} \frac{1+a_{0} t f}{a_{0} t+f}, \quad g f \underline{f}=b_{0} \frac{\frac{a_{1}}{t}+g}{1+\frac{a_{1}}{t} g}, \quad \bar{t}=q t . \tag{105}
\end{equation*}
$$

Eq. (105) admits two different specializations for hypergeometric solutions: (a) specialization of $b_{i}$ (parameter of $A_{1}$ ), (b) specialization of $a_{i}$ (parameter of $A_{2}$ ). See also [7, 8] for details.
(2) Constraint on parameters
(a)

$$
\begin{equation*}
b_{0}=q . \tag{106}
\end{equation*}
$$

(b)

$$
\begin{equation*}
a_{0} a_{1}=q . \tag{107}
\end{equation*}
$$

(3) Hypergeometric solution
(a)

$$
\begin{equation*}
g=-\frac{a_{1}}{t}\left(1-\frac{q^{2}}{a_{0}^{2} a_{1}^{2}}\right) \frac{\Phi(b, z)}{\Phi\left(q^{2} b, z\right)}, \quad f=\frac{q^{2} t}{a_{0} a_{1}^{2}} \frac{1}{1-\frac{q^{2}}{a_{0}^{2} a_{1}^{2}}} \frac{\Phi\left(q^{2} b, q^{2} z\right)}{\Phi(b, z)}, \tag{108}
\end{equation*}
$$

where

$$
\Phi=\Phi(b, z)={ }_{1} \varphi_{1}\left(\begin{array}{c}
0  \tag{109}\\
b
\end{array} ; q^{2}, z\right),
$$

with

$$
\begin{equation*}
b=q^{2} / a_{0}^{2} a_{1}^{2}, \quad z=q^{2} t^{2} / a_{1}^{2} . \tag{110}
\end{equation*}
$$

(b)

$$
\begin{equation*}
g=\frac{b_{0}}{a_{0}} t \frac{\Psi(a, z)}{\Psi\left(a, q^{2} z\right)}, \quad f=-a_{0} t \frac{\Psi\left(a, q^{2} z\right)}{\Psi(a, z)}, \tag{111}
\end{equation*}
$$

where

$$
\Psi=\Psi(a, z)={ }_{1} \varphi_{1}\left(\begin{array}{c}
a  \tag{112}\\
0
\end{array} ; q^{2}, z\right)
$$

with

$$
\begin{equation*}
a=a_{0}^{2} t^{2}, \quad z=q / b_{0} \tag{113}
\end{equation*}
$$

### 3.4.2 Data

(1) Riccati equation
(a)

$$
\begin{equation*}
\bar{f}=\frac{\left(a_{0}^{2} a_{1}^{2} / q-a_{0}^{2} q t^{2}\right) f-a_{0} q t}{a_{0} t f+1}, \quad g=-a_{0} a_{1} \frac{1}{a_{0} t+f} \tag{114}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\bar{g}=-\frac{g-a_{0} b_{0} t}{a_{0} t g-b_{0}}, \quad f g=-b_{0} \tag{115}
\end{equation*}
$$

(2) Three-term and contiguity relations for hypergeometric function
(a) (i) Three-term relation

$$
\begin{equation*}
\frac{b}{z}\left(\Phi\left(b, q^{2} z\right)-\Phi(b, z)\right)+\Phi(b, z)+\frac{q^{2}}{z}\left(\Phi\left(b, z / q^{2}\right)-\Phi\right)=0 \tag{116}
\end{equation*}
$$

where

$$
\Phi(b, z)={ }_{1} \varphi_{1}\left(\begin{array}{l}
0  \tag{117}\\
b
\end{array} ; q^{2}, z\right)
$$

(ii) Contiguity relations

$$
\begin{align*}
& \Phi(b, z)-\frac{b}{q^{2}} \Phi\left(b, q^{2} z\right)=\left(1-\frac{b}{q^{2}}\right) \Phi\left(b / q^{2}, z\right)  \tag{118}\\
& \Phi(b, z)-\Phi\left(b, z / q^{2}\right)=\frac{z / q^{2}}{1-b} \Phi\left(q^{2} b, z\right) \tag{119}
\end{align*}
$$

(b) (i) Three-term relation

$$
\begin{equation*}
(1-a) \frac{z}{q^{2}}\left(\Psi\left(q^{2} a, z\right)-\Psi(a, z)\right)-\frac{a z}{q^{2}} \Psi(a, z)+\left(\Psi\left(a / q^{2}, z\right)-\Psi(a, z)\right)=0 \tag{120}
\end{equation*}
$$

where

$$
\Psi(a, z)={ }_{1} \varphi_{1}\left(\begin{array}{l}
a  \tag{121}\\
0
\end{array} ; q^{2}, z\right) .
$$

(ii) Contiguity relations

$$
\begin{align*}
& \Psi(a, z)-a \Psi\left(a, q^{2} z\right)=(1-a) \Psi\left(q^{2} a, z\right)  \tag{122}\\
& \Psi(a, z)-\Psi\left(q, z / q^{2}\right)=(1-a) \frac{z}{q^{2}} \Psi\left(q^{2} a, z\right) \tag{123}
\end{align*}
$$

(3) Decoupling factors
(a)

$$
\begin{equation*}
H=\frac{1}{q}, \quad K=1, \quad k=\frac{H}{K}=\frac{1}{q}, \quad \kappa=\frac{a_{1}}{q t} . \tag{124}
\end{equation*}
$$

(b)

$$
\begin{equation*}
H=-\frac{1}{1-a_{0}^{2} t^{2}}, \quad K=\frac{1}{q} \frac{1}{1-a_{0}^{2} t^{2}}, \quad k=\frac{H}{K}=q, \quad \kappa=a_{0} t . \tag{125}
\end{equation*}
$$

(4) Identification
(a)

$$
\begin{equation*}
f=\frac{1}{\kappa} \frac{F}{G}, \quad F \propto \Phi\left(q^{2} b, q^{2} z\right), \quad G \propto \Phi(b, z), \tag{126}
\end{equation*}
$$

with parameters given in eq.(110).
(b)

$$
\begin{equation*}
g=\frac{1}{\kappa} \frac{F}{G}, \quad F \propto \Psi(a, z), \quad G \propto \Psi\left(a, q^{2} z\right), \tag{127}
\end{equation*}
$$

with parameters given in eq.(113).
(5) Gauge factors
(a) Putting

$$
\begin{equation*}
F=\theta\left(q^{2} b, q^{2} z\right) \Phi\left(q^{2} b, q^{2} z\right), \quad G=\theta(b, z) \Phi(b, z) \tag{128}
\end{equation*}
$$

we have:

$$
\begin{equation*}
\frac{\theta\left(b, q^{2} z\right)}{\theta(b, z)}=1, \quad \frac{\theta\left(q^{2} b, z\right)}{\theta(b, z)}=\frac{\theta\left(q^{2} b, q^{2} z\right)}{\theta(b, z)}=\frac{q}{a_{0} a_{1}\left(1-\frac{q^{2}}{a_{0}^{2} a_{1}^{2}}\right)} \tag{129}
\end{equation*}
$$

(b) Putting

$$
F=\theta(a, z) \Psi(a, z), \quad G=\theta\left(a, q^{2} z\right) \Psi\left(a, q^{2} z\right)
$$

we have:

$$
\begin{equation*}
\frac{\theta\left(q^{2} a, z\right)}{\theta(a, z)}=1, \quad \frac{\theta\left(a, q^{2} z\right)}{\theta(a, z)}=\frac{\theta\left(q^{2} a, q^{2} z\right)}{\theta(a, z)}=\frac{1}{b_{0}} . \tag{131}
\end{equation*}
$$

3.5 Case of $\left(A_{1}+A_{1}^{\prime}\right)^{(1)}$

### 3.5.1 Equation and Solution

(1) $q$-Painlevé equation $[2,3,18]$

$$
\begin{equation*}
(\bar{f} f-1)(f \underline{f}-1)=\frac{a t^{2} f}{f+t}, \quad \bar{t}=q t . \tag{132}
\end{equation*}
$$

(2) Constraint on parameters

$$
\begin{equation*}
a=q \tag{133}
\end{equation*}
$$

(3) Hypergeometric solution

$$
f=\frac{\Phi(q t)}{\Phi(t)}, \quad \Phi={ }_{1} \varphi_{1}\left(\begin{array}{c}
0  \tag{134}\\
-q
\end{array} ; q,-q t\right) .
$$

### 3.5.2 Data

(1) Riccati equation

$$
\begin{equation*}
\bar{f}=\frac{1}{f}-q t . \tag{135}
\end{equation*}
$$

(2) Three-term relation

$$
\begin{equation*}
\Phi(q t)+t \Phi(t)=\Phi(t / q) \tag{136}
\end{equation*}
$$

(3) Identification

$$
\begin{equation*}
f=\frac{F}{G}, \quad F=\Phi(q t), \quad G=\Phi(t) . \tag{137}
\end{equation*}
$$

We note that there is no need to introduce decoupling and gauge factors.
Acknowledgment One of the author(K.K.) would like to thank Professor Nalini Joshi for hospitality during his stay in University of Sydney.

## References

[1] K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada, Hypergeometric solutions to the q-Painlevé equations, Int. Math. Res. Not. 2004 2497-2521.
[2] H. Sakai, Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Commun. Math. Phys. 220 (2001) 165-229.
[3] A. Ramani, B. Grammaticos, T. Tamizhmani and K.M. Tamizhmani, Special function solutions of the discrete Painlevé equations, Comp. Math. Appl. 42(2001) 603-614.
[4] K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada, ${ }_{10} E_{9}$ solution to the elliptic Painlevé equation, J. Phys. A: Math. Gen. 36 (2003) L263-L272.
[5] H. Sakai, Casorati determinant solutions for the q-difference sixth Painlevé equation, Nonlinearity 11 (1998) 823833.
[6] M. Murata, H. Sakai and J. Yoneda, Riccati solutions of discrete Painlevé equations with Weyl group symmetry of type $E_{8}^{(1)}$, J. Math. Phys. 44 (2003) 1396-1414.
[7] K. Kajiwara, M. Noumi and Y. Yamada, A study on the fourth q-Painlevé equation, J. Phys. A: Math. Gen. 34 (2001) 8563-8581.
[8] K. Kajiwara and K. Kimura, On a q-difference Painlevé III equation. I: Derivation, symmetry and Riccati type solutions, J. Nonlin. Math. Phys. 10 (2003) 86-102.
[9] G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, 35(1990) (Cambridge: Cambridge University Press).
[10] D.P. Gupta, M.E.H. Ismail and D.R. Masson, Contiguous relations, basic hypergeometric functions, and orthogonal polynomials. II. associated big q-Jacobi polynomials, J. Math. Anal. Appl. 171(1992) 477-497.
[11] M. Ismail and M. Rahman, The Associated Askey-Wilson Polynomials, Trans. Amer. Math. Soc. 328(1991) 201-237.
[12] Y. Ohta, A. Ramani and B. Grammaticos, An affine Weyl group approach to the eight-parameter discrete Painlevé equation, J. Phys. A: Math. Gen. 34 (2001) 10523-10532.
[13] D.P. Gupta and D.R. Masson, Contiguous relations, continued fractions and orthogonality, Trans. Amer. Math. Soc. 350 (1998) 769-808.
[14] B. Grammaticos, A. Ramani and Y. Ohta, A unified description of the asymmetric $q-P_{\mathrm{V}}$ and $d-P_{\mathrm{IV}}$ equations and their Schlesinger transformations, J. Nonlin. Math. Phys. 2(2003) 215-228.
[15] K.M. Tamizhmani, A. Ramanim B. Grammaticos and Y. Ohta, A study of the discrete $P_{\mathrm{V}}$ equation: Miura transformation and particular solutions, Lett. Math. Phys. 38(1996) 289-296.
[16] R. Koekoek and R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Delft University of Technology, Faculty of Information Technology and Systems, Department of Technical Mathematics and Informatics, Report no. 98-17 (1998).
[17] K. Kajiwara, On a q-difference Painlevé III equation. II: Rational solutions, J. Nonlin. Math. Phys. 10 (2003) 282303.
[18] A. Ramani and B. Grammaticos, Discrete Painlevé equations: coalescences, limits and degeneracies, Physica A 228 (1996) 160-171.

# List of MHF Preprint Series, Kyushu University <br> 21st Century COE Program <br> Development of Dynamic Mathematics with High Functionality 

MHF2003-1 Mitsuhiro T. NAKAO, Kouji HASHIMOTO \& Yoshitaka WATANABE
A numerical method to verify the invertibility of linear elliptic operators with applications to nonlinear problems

MHF2003-2 Masahisa TABATA \& Daisuke TAGAMI
Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients

MHF2003-3 Tomohiro ANDO, Sadanori KONISHI \& Seiya IMOTO
Adaptive learning machines for nonlinear classification and Bayesian information criteria

MHF2003-4 Kazuhiro YOKOYAMA
On systems of algebraic equations with parametric exponents
MHF2003-5 Masao ISHIKAWA \& Masato WAKAYAMA
Applications of Minor Summation Formulas III, Plücker relations, Lattice paths and Pfaffian identities

MHF2003-6 Atsushi SUZUKI \& Masahisa TABATA
Finite element matrices in congruent subdomains and their effective use for large-scale computations

MHF2003-7 Setsuo TANIGUCHI
Stochastic oscillatory integrals - asymptotic and exact expressions for quadratic phase functions -

MHF2003-8 Shoki MIYAMOTO \& Atsushi YOSHIKAWA
Computable sequences in the Sobolev spaces
MHF2003-9 Toru FUJII \& Takashi YANAGAWA
Wavelet based estimate for non-linear and non-stationary auto-regressive model
MHF2003-10 Atsushi YOSHIKAWA
Maple and wave-front tracking - an experiment
MHF2003-11 Masanobu KANEKO
On the local factor of the zeta function of quadratic orders
MHF2003-12 Hidefumi KAWASAKI
Conjugate-set game for a nonlinear programming problem

MHF2004-1 Koji YONEMOTO \& Takashi YANAGAWA
Estimating the Lyapunov exponent from chaotic time series with dynamic noise

MHF2004-2 Rui YAMAGUCHI, Eiko TSUCHIYA \& Tomoyuki HIGUCHI
State space modeling approach to decompose daily sales of a restaurant into time-dependent multi-factors

MHF2004-3 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \& Yasuhiko YAMADA
Cubic pencils and Painlevé Hamiltonians
MHF2004-4 Atsushi KAWAGUCHI, Koji YONEMOTO \& Takashi YANAGAWA
Estimating the correlation dimension from a chaotic system with dynamic noise

MHF2004-5 Atsushi KAWAGUCHI, Kentarou KITAMURA, Koji YONEMOTO, Takashi YANAGAWA \& Kiyofumi YUMOTO
Detection of auroral breakups using the correlation dimension
MHF2004-6 Ryo IKOTA, Masayasu MIMURA \& Tatsuyuki NAKAKI
A methodology for numerical simulations to a singular limit
MHF2004-7 Ryo IKOTA \& Eiji YANAGIDA
Stability of stationary interfaces of binary-tree type
MHF2004-8 Yuko ARAKI, Sadanori KONISHI \& Seiya IMOTO
Functional discriminant analysis for gene expression data via radial basis expansion

MHF2004-9 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \& Yasuhiko YAMADA
Hypergeometric solutions to the $q$ - Painlevé equations
MHF2004-10 Raimundas VIDŪNAS
Expressions for values of the gamma function
MHF2004-11 Raimundas VIDŪNAS
Transformations of Gauss hypergeometric functions
MHF2004-12 Koji NAKAGAWA \& Masakazu SUZUKI
Mathematical knowledge browser
MHF2004-13 Ken-ichi MARUNO, Wen-Xiu MA \& Masayuki OIKAWA
Generalized Casorati determinant and Positon-Negaton-Type solutions of the Toda lattice equation

MHF2004-14 Nalini JOSHI, Kenji KAJIWARA \& Marta MAZZOCCO
Generating function associated with the determinant formula for the solutions of the Painlevé II equation

MHF2004-15 Kouji HASHIMOTO, Ryohei ABE, Mitsuhiro T. NAKAO \& Yoshitaka WATANABE
Numerical verification methods of solutions for nonlinear singularly perturbed problem

MHF2004-16 Ken-ichi MARUNO \& Gino BIONDINI
Resonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete versions

MHF2004-17 Ryuei NISHII \& Shinto EGUCHI
Supervised image classification in Markov random field models with Jeffreys divergence

MHF2004-18 Kouji HASHIMOTO, Kenta KOBAYASHI \& Mitsuhiro T. NAKAO
Numerical verification methods of solutions for the free boundary problem
MHF2004-19 Hiroki MASUDA
Ergodicity and exponential $\beta$-mixing bounds for a strong solution of Lévydriven stochastic differential equations

MHF2004-20 Setsuo TANIGUCHI
The Brownian sheet and the reflectionless potentials
MHF2004-21 Ryuei NISHII \& Shinto EGUCHI
Supervised image classification based on AdaBoost with contextual weak classifiers

MHF2004-22 Hideki KOSAKI
On intersections of domains of unbounded positive operators
MHF2004-23 Masahisa TABATA \& Shoichi FUJIMA
Robustness of a characteristic finite element scheme of second order in time increment

MHF2004-24 Ken-ichi MARUNO, Adrian ANKIEWICZ \& Nail AKHMEDIEV
Dissipative solitons of the discrete complex cubic-quintic Ginzburg-Landau equation

MHF2004-25 Raimundas VIDŪNAS
Degenerate Gauss hypergeometric functions
MHF2004-26 Ryo IKOTA
The boundedness of propagation speeds of disturbances for reaction-diffusion systems

MHF2004-27 Ryusuke KON
Convex dominates concave: an exclusion principle in discrete-time Kolmogorov systems

Multiple attractors in host-parasitoid interactions: coexistence and extinction
MHF2004-29 Kentaro IHARA, Masanobu KANEKO \& Don ZAGIER
Derivation and double shuffle relations for multiple zeta values
MHF2004-30 Shuichi INOKUCHI \& Yoshihiro MIZOGUCHI
Generalized partitioned quantum cellular automata and quantization of classical CA

MHF2005-1 Hideki KOSAKI
Matrix trace inequalities related to uncertainty principle
MHF2005-2 Masahisa TABATA
Discrepancy between theory and real computation on the stability of some finite element schemes

MHF2005-3 Yuko ARAKI \& Sadanori KONISHI
Functional regression modeling via regularized basis expansions and model selection

MHF2005-4 Yuko ARAKI \& Sadanori KONISHI Functional discriminant analysis via regularized basis expansions

MHF2005-5 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \& Yasuhiko YAMADA
Point configurations, Cremona transformations and the elliptic difference Painlevé equations

MHF2005-6 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \& Yasuhiko YAMADA
Construction of hypergeometric solutions to the $q$ - Painlevé equations


[^0]:    ${ }^{1}$ The "balanced ${ }_{3} \varphi_{2}$ " in the diagram (1) is due to the convention that was used in [10].

[^1]:    ${ }^{2}$ This variable $z$ should be understood as a ratio of $\tau$ functions.

