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Generalized Partitioned Quantum Cellular

Automata and Quantization of Classical CA

Shuichi INOKUCHI∗ Yoshihiro MIZOGUCHI†

Abstract

In this paper, in order to investigate natural transformations from dis-
crete CA to QCA, we introduce a formulation of finite cyclic QCA and
generalized notion of partitioned QCA. According to the formulations, we
demonstrate the condition of local transition functions, which induce a
global transition of well-formed QCA. Following the results, extending a
natural correspondence of classical cells and quantum cells to the corre-
spondence of classical CA and QCA, we have the condition of classical CA
such that CA generated by quantization of its cells is well-formed QCA.
Finally we report some results of computer simulations of quantization of
classical CA.

1 Introduction

J. Watrous introduced the notion of quantum cellular automata(QCA) and
showed that any quantum Turing machine can be efficiently simulated by a
QCA with constant slowdown in 1995. C. Dürr and M. Santha [4] considered
the properties between local function of quantum cellular automata and the
unitarity of the global time evolution operator and proposed an algorithm to
decide if a linear quantum cellular automaton is unitary. W. van Dam [14, 15]
focused on a quantum cellular automata with circular bounded configurations.
He also introduced an periodic quantum gate cellular automata and prove that
the universality of it.

CA with quantum cells is well-formed QCA if and only if its global transition
function is unitary. Generally quantization of cells of a classical CA dose not
always induce a QCA, because usually classical CA dose not have reversibility.
Morita and Harao show that we can get reversible CA by partition a cell into
three part and partitioned CA can simulate non-partitioned CA[11]. But there
is not a trivial inclusion relation between partitioned CA and non-partitioned
CA.
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†Faculty of Mathematics, Kyushu University, E-mail:ym@math.kyushu-u.ac.jp
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In this paper, we introduce another systematic formulation of finite cyclic
QCA and generalized notion of partitioned QCA in order to investigate natural
transformation from discrete classical CA to QCA.

According to the formulations, we demonstrate a condition of a local tran-
sition function, which induce a well-formed QCA. A natural correspondence of
classical cells and quantum cells can be extended to the correspondence of clas-
sical CA and QCA. If a classical CA satisfies our conditions then the extended
QCA is well-formed. Finally we report some results of computer simulations of
quantization of classical CA.

2 Preliminaries

Let Q be a set of states of cells and |Q| = s. We consider Qn is the set of
configurations of CA where n is the size of CA.qi denotes the ith element of the
configuration q ∈ Qn, and assume that q0 = qn and qn+1 = q1.

Before considering computing process of quantum states, we recall that of
deterministic states. We use the set of all subset of Q, that is, the set 2Q of all
functions from Q to 2 = {0, 1} to represent nondeterministic states.

A element q of Q is normally considered as an element {q} of 2Q. Let Σ be
the finite set of input characters, then a transition function of input characters
of deterministic finite automata is provided as δ : Q × Σ → Q, and expanded
naturally into the transition function δ∗ : Q × Σ∗ → Q of input strings. Let
[δ] : Q × Σ → 2Q be a function defined by [δ](q, α) = [δ(q, α)].

The function [δ] is a state transition function of nondeterministic finite au-
tomata and we can expand [δ] into [δ]∗ : Q×Σ∗ → 2Q. Recall [δ∗] : Q×Σ∗ → 2Q

be a function defined by [δ∗](q, α) = [δ∗(q, α)], and we can show that [δ∗] = [δ]∗
easily. This shows that the set of all deterministic finite automata are included
in the set of all nondeterministic finite automata naturally.

We can consider quantum states as generalized states of classical state and
extend to a quantum formulation of computer system. But a classical computer
system is not always a quantum computer system generally, because a quantum
computing process should be a unitary operator and every classical computing
process is not so.

A quantum state denotes a function from a finite set Q to a set of complex
numbers C and CQ is denoted by the set of all functions from Q to C. For
q ∈ Q we define [q] ∈ CQ as follows;

[q](x) =
{

1 (x = q)
0 (x �= q)

CQ is a linear space on C such that its bases is Q. An inner product in CQ is
defined by 〈p, q〉 =

∑
x∈Q

(p(x) · q(x)) where p, q ∈ CQ.

A linear space C(Qn) on C is considered as a tensor product CQ ⊗ CQ ⊗ · · · ⊗ CQ︸ ︷︷ ︸
n

,

that is, for p ∈ Qn [p] = [p1]⊗ [p2]⊗ · · · ⊗ [pn]. For p, q ∈ Qn the inner product
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〈[p], [q]〉 on C(Qn) is as follows;

〈[p], [q]〉
=

∑
x∈Qn

([p](x) · [q](x))

=
∑

(x1,x2,...,xn)∈Qn

(([p1](x1)[p2](x2) · · · [pn](xn))

·([q1](x1)[q2](x2) · · · [qn](xn)))

=
∑

x1∈Q

([p1](x1)[q2](x1)) ·
∑

x2∈Q

([p2](x2)[q2](x2))

· · ·
∑

xn∈Q

([pn](xn)[qn](xn))

= 〈[p1], [q1]〉〈[p2], [q2]〉 · · · 〈[pn], [qn]〉.

For a function F : Qn → C(Qn), we define functions αF : Qn × Qn → C and
F : C(Qn) → C(Qn) by αF (p, q) = F (p)(q) and F (X) =

∑
q∈Qn

(X(q)(F (q))). We

call F is unitary if ||F (X)|| = 1 for any X ∈ C(Qn) such that ||X || = 1.
Since Q is finite, we can label elements of Q numbers from 1 to s and also

elements of Qn numbers from 1 to sn by lexicographical ordering. We define a
sn × sn matrix (αij) by αij = αF (p, q) where numbers of elements p and q are
i and j.

Proposition 1 If the matrix (αi,j) is unitary then F is unitary.

Proof. Assume that (αij) is a unitary matrix and 〈X, X〉 = 1.

〈F (X), F (X)〉
= 〈

∑
p∈Qn

X(p)F (p),
∑

q∈Qn

X(q)F (q)〉

=
∑

p∈Qn

∑
q∈Qn

〈X(p)F (p), X(q)F (q)〉

=
∑

p∈Qn

(X(p)
∑

q∈Qn

(X(q)
∑

r∈Qn

(F (p)(r) · F (q)(r))))

=
∑

p∈Qn

(X(p)
∑

q∈Qn

(X(q)
∑

r∈Qn

(α(p, r) · α(q, r))))

=
∑

p∈Qn

(X(p)
∑

q∈Qn

(X(q)
∑

r∈Qn

(α(p, r) · α(r, q))))

=
∑

p∈Qn

(X(p) · X(p))

= 1

So F is unitary. �
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Proposition 2 Let σ̂ : CQn → CQn

be defined by σ̂(X) =
∑

p∈Qn(X(p)[σ(p)])
where σ : Qn → Qn. Then σ̂ are unitary if and only if σ is a bijection.

Proof. (If) Assume that σ is bijection and 〈X, X〉 = 1.

〈σ̂(X), σ̂(X)〉
=

∑
p∈Qn

(σ̂(X)(p), σ̂(X)(p))

=
∑

p∈Qn

(
∑

q∈Qn

(X(q)[σ(q)](p)),
∑

q∈Qn

(X(q)[σ(q)](p)))

=
∑

p∈Qn

(X(σ−1(p)), X(σ−1(p)))

=
∑

p∈Qn

(X(p), X(p))

= 1

So σ̂ is unitary.
(Only if) Assume that σ̂ is unitary and σ is not bijection. Now we let

Q0 = {q0 ∈ Qn|σ(p) �= q0 for ∀p ∈ Qn},
Q1 = {q1 ∈ Qn|∃!p ∈ Qn such that σ(p) = q1},
Q2 = {q2 ∈ Qn|∃p1, p2 ∈ Qn such that q2 = σ(p1) = σ(p2) and p1 �= p2},
|Q2| = s(�= 0) and

X(q) =
{ 1√

s
(q ∈ Q2)

0 otherwise.

Then 〈X, X〉 = 1 and

〈σ̂(X), σ̂(X)〉
=

∑
q∈Qn

(σ̂(X)(q) · σ̂(X)(q))

=
∑

q∈Qn

(
∑

p∈Qn

(X(p)[σ(p)])(q) ·
∑

p∈Qn

(X(p)[σ(p)])(q))

=
∑

q∈Qn

(
∑

σ(p)=q

X(p) ·
∑

σ(p)=q

X(p))

=
∑

q∈Q2

(
∑

σ(p)=q

X(p) ·
∑

σ(p)=q

X(p))

�= 1

This is contradiction. So we get that σ is bijection. �
A classical CA[17] is a transition system in Q defined by a global transition

function F : Qn → Qn where F (q)i = f(qi−1, qi, qi+1) and f : Q × Q × Q → Q
is a local transition function.
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When Q = {0, 1}, a local transition function is defined by the eight values
f(0, 0, 0) = r0, f(0, 0, 1) = r1, f(0, 1, 0) = r2, f(0, 1, 1) = r3, f(1, 0, 0) = r4,
f(1, 0, 1) = r5, f(1, 1, 0) = r6 and f(1, 1, 1) = r7 (ri = 0, 1). The rule number
R of a local transition function f is defined by

R = 27r7+26r6+25r5+24r4+23r3+22r2+21r1+r0.

The local transition function of rule number R is denoted by fR. The local
transition rules with rule number 204,240 and 170 are illustrated as follows;

111 110 101 100 011 010 001 000
204 1 1 0 0 1 1 0 0

111 110 101 100 011 010 001 000
240 1 1 1 1 0 0 0 0

111 110 101 100 011 010 001 000
170 1 0 1 0 1 0 1 0

f204, f240 and f170 are identity, shift-right and shift-left functions respec-
tively.

3 Quantum Cellular Automata

The global transition function F : Qn → C(Qn) is defined by Fh(q)(x) =
h(q0, q1, q2)(x1) · h(q1, q2, q3)(x2) · · ·h(qn−1, qn, qn+1)(xn) for a local transition
function h : Q × Q × Q → CQ, A transition system in C(Qn) is defined by
Fh : C(Qn) → C(Qn). The local transition function h is called ’forming a quan-
tum cellular automaton’ if Fh is unitary.

Let Ff : Qn → Qn be a global transition function of a local transition func-
tion f : Q3 → Q, and [Ff ] : Qn → CQn

a function such that [Ff ](x) = [Ff (x)]
for x ∈ Qn. And we let [f ] : Q3 → CQ be a local transition function of QCA
such that [f ](x) = [f(x)] for x ∈ Q3, and F[f ] : Qn → C(Qn) its global transition
function. Then we can show that [Ff ] = F[f ] by easy computation. But a local
transition functions [f ] : Q3 → CQ does not always form a QCA, that is, a [Ff ]
is not always unitary. W. van Dam[14, 15] introduced a formulation of cyclic
quantum cellular automata and investigate their properties of well-formedness.
We focused on reinvestigating similar results related with the extension of clas-
sical CA and their local functions.

Proposition 3 [f ] is forming a quantum cellular automata if and only if Ff :
Qn → Qn is a bijection.

Proof. For X ∈ C(Qn)

F[f ](X) = [Ff ](X)

=
∑

q∈Qn

(X(q)([Ff ](q)))

=
∑

q∈Qn

(X(q)([Ff (q)]))

= F̂f (X).
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So this is derived from proposition 2. �

4 Partitioned Quantum Cellular Automata

We define functions G : Qn → C(Qn) and λ : Q×Q → C by G(q)(x) = g(q1)(x1)·
g(q2)(x2) · · · g(qn)(xn) and λ(p, q) = g(p)(q) for a function g : Q → CQ.

We label the elements of Qn numbers from 1 to sn and define a sn × sn

matrix (αij) from αG : Qn ×Qn → C. And we label the elements of Q numbers
from 1 to s and define a s × s matrix (λij) from the function λ.

Proposition 4 (λij) is a unitary matrix if and only if (αij) is a unitary matrix.

Proof. (Only if) Assume that (λi,j) is unitary.∑
q∈Qn

(α(p, q) · α(r, q))

=
∑

q∈Qn

(G(p)(q) · G(r)(q))

=
∑

q1∈Q

· · ·
∑

qn∈Q

g(p1)(q1) · · · g(pn)(qn) · g(r1)(q1) · · · g(rn)(qn)

= λ(p1, r1) · λ(p2, r2) · · ·λ(pn, rn)
= 〈[p1], [r1]〉 · 〈[p2], [r2]〉 · · · 〈[pn], [rn]〉
= 〈[p], [r]〉

So αi,j is unitary.
(If) Assume that αi,j is unitary and λi,j is not so, that is, λ(pi, qi) �= 〈[pi], [qi]〉.
Then ∑

q∈Qn

(α(p, q) · α(r, q)) = λ(p1, r1) · λ(p2, r2) · · ·λ(pn, rn)

�= 〈[p1], [r1]〉 · 〈[p2], [r2]〉 · · · 〈[pn], [rn]〉
= 〈[p], [r]〉

This is contradiction. So λi,j is unitary. �

Proposition 5 If σ : Qn → Qn is a bijection, then the followings hold;

(i) G ◦ σ = G ◦ σ̂.

(ii) G ◦ σ is unitary if and only if G is unitary.

Qn σ−−−−→ Qn G−−−−→ C(Qn)	 	 
��
C(Qn) −−−−→

σ̂
C(Qn) −−−−→

G
C(Qn)

Proof.
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(i)

G ◦ σ(X) =
∑

q∈Qn

(X(q)((G ◦ σ)(q)))

=
∑

q∈Qn

(X(q)(G(σ(q)))

=
∑

p∈Qn

(X(σ−1(p))(G(q)))

=
∑

p∈Qn

((
∑

r∈Qn

(X(r)[σ(r)]))(q)(G(q))))

=
∑

p∈Qn

(σ̂(X)(q)(G(q))))

= G ◦ σ̂(X)

(ii) (If) It is trivial from (i) and proposition 2.
(Only if) Assume that G ◦ σ = G ◦ σ̂ is unitary and G is not so, that is,
〈G ◦ σ(X), G ◦ σ(X)〉 = 1 and 〈σ̂(X), σ̂(X)〉 = 1 for any X ∈ C(Qn) such
that 〈X, X〉 = 1, and there exists Y ∈ C(Qn) such that 〈Y, Y 〉 = 1 and
〈G(Y ), G(Y )〉 �= 1. Then

1 = 〈G ◦ σ(σ̂−1(Y )), G ◦ σ(σ̂−1(Y ))〉
= 〈G ◦ σ̂(σ̂−1(Y )), G ◦ σ̂(σ̂−1(Y ))〉
= 〈G(σ̂(σ̂−1(Y ))), G(σ̂(σ̂−1(Y )))〉
= 〈G(Y ), G(Y )〉
�= 1

�

Theorem 6 The composition function f = g ◦ e : Q3 → CQ of functions
e : Q3 → Q and g : Q → CQ is forming a quantum cellular automaton if both
of the following two conditions hold:

(i) Fe : Qn → Qn is a bijection.

(ii) The matrix (λij) defined from g : Q → CQ is unitary.

Proof. At First we show that Ff = G ◦ Fe.

G ◦ Fe(q)(x)
= g(e(q0, q1, q2))(x1) · g(e(q1, q2, q3))(x2) · · · g(e(qn−1, qn, qn+1))(xn)
= (g ◦ e)(q0, q1, q2)(x1) · (g ◦ e)(q1, q2, q3)(x2) · · · (g ◦ e)(qn−1, qn, qn+1)(xn)
= Fg◦e(q)(x).

7



Therefore

Ff (X) = Fg◦e(X)

=
∑

q∈Qn

(X(q)(Fg◦e(q)))

=
∑

q∈Qn

(X(q)(G ◦ Fe)(q))

= G ◦ Fe(X).

So we can prove this by proposition 4 and 5. �

Example 7 Let Q = L×M×R for finite sets L, M and R. We define e : Q3 →
Q and g : Q → CQ by e(((l1, m1, r1), (l2, m2, r2), (l3, m3, r3))) = (l3, m2, r1) and
g(q) = [q]. Then the composition function f = g ◦ e is forming a quantum
cellular automaton. Because Fe : Qn → Qn is a bijection, Fe(((li, mi, ri)))j =
(lj+1, mj , rj−1), and (λij) defined from g is an identity matrix.

In example 7, we can replace g to another function g : Q → CQ where the
matrix (λij) defined from g is unitary. On that occasion f : (L × M × R)3 →
(L × M × R) is also forming a quantum cellular automaton. Consequently a
partitioned quantum cellular automaton introduced in [16] is demonstrated as
a special case of our general formulation.

Example 8 Let Q = {0, 1}, e : Q3 → Q be a function such that Fe : Qn → Qn

is a bijection, and Λ = (λij) defined from g : Q → CQ be as follows;

Λ =
(

cos θ − sin θ
sin θ cos θ

)
.

Then the local transition function defined from f = g◦e forms a quantum cellular
automaton. This shows a quantum cellular automaton formed by a synthesised
function of a local transition function e and its reverse function. That is, if
θ = 0 then f = e and if θ = π

2 then f is the reversed function of e, so we
can consider f for 0 < θ < π

2 as a synthesised function of two classical local
functions.

Example 9 Let Q = {0, 1} × {0, 1},
e((a1, b1), (a2, b2), (a3, b3)) = (a1, b3), and Λ = (λij) defined by g : Q → CQ be
as follows;

Λ =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 .

Then f = g ◦ e forms a QCA and f((a1, b1), (a2, b2), (a3, b3)) = (a1, a1 ⊕ b3).
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5 Computer Analysis

The following is a table of the size n of CA and rule number R where the local
transition function fR : Q3 → Q forms QCA (Q = {0, 1}, 3 ≤ n ≤ 22 and
128 ≤ R ≤ 255). We note that if fR forms QCA then f255−R also forms QCA.

Size n Rule number R

3 142, 154, 156, 166, 170, 172, 178, 180, 184
198, 202, 204, 210, 212, 216, 226, 228, 240

4, 8, 10, 14 150, 170, 204, 240
16, 20, 22
5, 7, 11, 13, 19 150, 154, 166, 170, 180, 204, 210, 240
9, 15, 21 154, 166, 170, 180, 204, 210, 240
6, 12, 18 170, 204, 240

In the case of size 6, 12 and 18, trivial transitions, that is, identity, right
shift and left shift functions only form QCA. In other case, there is a nontrivial
transition function forming QCA.

From the above table, we can guess the following table of sizes of CA and
rule numbers of local transition functions forming QCA, but we have not proved
it yet.

Size (k ≥ 1) Rule number

6k ± 2 150, 170, 204, 240
6k ± 1 150, 154, 166, 170, 180, 204, 210, 240
6k + 3 154, 166, 170, 180, 204, 210, 240
6k 170, 204, 240

Example 10 When the size of CA is 4 or 5, the local transition function
f150(x, y, z) = x + y + z(mod2) forms a quantum CA.
Let Ff be the global transition function, then the following hold;

Ff (x)i = xi−1 + xi + xi+1

F 2
f (x)i = xi−2 + xi−1 + xi

+xi−1 + xi + xi+1

+xi + xi+1 + xi+2

= xi−2 + xi + xi+2

F 3
f (x)i = xi−3 + xi−2 + xi−1

+xi−1 + xi + xi+1

+xi+1 + xi+2 + xi+3

= xi−3 + xi−2 + xi + xi+2 + xi+3

In the case that the size of CA is 4, F 2
f (x)i = xi+2 + xi + xi+2 = xi. So

F 2
f (x) = x. In the case that the size of CA is 5, F 3

f (x)i = xi+2 + xi+3 + xi +
xi+2 + xi+3 = xi. So F 3

f (x) = x. Namely there exists y such that Ff (y) = x for
any x ∈ Qn (n = 4, 5), and Ff is a bijection. So f forms a QCA.
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6 Related Works and Conclusion

Cellular automata dealt in this paper is finite cyclic CA and different from
CA without boundary, that is, infinite CA dealt by Watrous[16], Morita and
Harao[11]. Because the size of CA is finite it does not have the universal
computability[12, 1, 2]. But the conditions of local transition functions forming
QCA is formulated clearly in our framework.

Injectivity of global maps of classical CA is an essential property for extend-
ing to a QCA. The injectivity are considered in [8, 9, 10, 12] for classical CA
without boundary and in [6, 3, 7] for classical finite cyclic CA.

A further direction of this study will be to consider properties on construction
and synthesis of general quantum computer system by examining construction
and synthesis of local transition function of realizable QCA.
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[4] C. Dürr and M. Santha: A Decision Procedure for unitary linear quantum
cellular automata, SIAM J. Comput., 31(4), pp. 1076–1089, 2002

[5] J. Gruska: Quantum Computing, McGraw-Hill, 1999.

[6] M. Harao and S. Noguchi: On the Algebraic Properties of the Iterative
Automaton, Trans. IEICE, J55-D, pp.767–774, 1972. [Japanese]

[7] K. Ichikawa, H. Aso, Y. Inagaki and N. Honda: Dynamical Chracteristics
of Linear Circular Cellular Automata, Trans. IEICE, J65-D, pp.1129–1136,
1982. [Japanese]

[8] M. Ito, N. Osato and M. Nasu: Linear Cellular Automata over Zm, J.
Computer and System Sciences, 27, pp.125–140, 1983.

[9] A. Maruoka and M. Kimura: Condition for Injectivity of Global Maps for
Tesselation Automata, Information and Control, 32, pp.158–162, 1976.

[10] A. Maruoka and M. Kimura: Injectivity and Surjectivity of Parallel Maps
for Cellular Automata, J. Computer and System Sciences, 18, pp.47–64,
1979.

10



[11] K. Morita and M. Harao: Computation Universality of One-Dimensional
Reversible (Injective) Cellular Automata, Trans. IEICE, E72, pp. 758–762,
1989.

[12] T. Toffoli: Computation and Construction Universality of Reversible Cel-
lular Automata, J. Comput. System Sci., 15, pp. 213–231, 1977.

[13] T. Toffoli and H. Margolus: Invertible Cellular Automata: A Review, Phys-
ica D, 45, pp.229–253, 1990.

[14] W. van Dam: Quantum Cellular Automata, Master’s thesis, University of
Nijmegen, The Netherlands

[15] W. van Dam: A Universal Quantum Cellular Automaton, Proceedings of
the Fourth Workshop on Physics and Computation, pp. 323–331, 1996

[16] J. Watrous: On One-Dimensional Quantum Cellular Automata, Proceed-
ings of the 36th Annual Symposium on Foundations of Computer Science,
pp. 528–537, 1995.

[17] S. Wolfram:Cellular Automata and Complexity: Collected Papers, Addison-
Wesley Publishing Company, 1994

11



List of MHF Preprint Series, Kyushu University
21st Century COE Program

Development of Dynamic Mathematics with High Functionality

MHF2003-1 Mitsuhiro T. NAKAO, Kouji HASHIMOTO & Yoshitaka WATANABE
A numerical method to verify the invertibility of linear elliptic operators with
applications to nonlinear problems

MHF2003-2 Masahisa TABATA & Daisuke TAGAMI
Error estimates of finite element methods for nonstationary thermal convection
problems with temperature-dependent coefficients

MHF2003-3 Tomohiro ANDO, Sadanori KONISHI & Seiya IMOTO
Adaptive learning machines for nonlinear classification and Bayesian informa-
tion criteria

MHF2003-4 Kazuhiro YOKOYAMA
On systems of algebraic equations with parametric exponents

MHF2003-5 Masao ISHIKAWA & Masato WAKAYAMA
Applications of Minor Summation Formulas III, Plücker relations, Lattice
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