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CONVEX DOMINATES CONCAVE:
AN EXCLUSION PRINCIPLE IN DISCRETE-TIME

KOLMOGOROV SYSTEMS

RYUSUKE KON

Abstract. We establish an exclusion principle in discrete-time Kolmogorov
systems by using average Liapunov functions. The exclusion principle shows
that a weakly dominant species with a convex logarithmic growth rate func-
tion eliminates species with concave logarithmic growth rate functions. A
general result is applied to specific population models. This application gives
an improved exclusion principle for the specific population models.

1. Introduction

In this paper, we consider population dynamics governed by difference equations.
One of the most popular types of population models has the following form:

xi(t + 1) = xi(t)gi(x(t)), i = 1, . . . , n.(1.1)

This type of population models is called Kolmogorov type. The valuable xi(t) rep-
resents a population density of species i at time t and x(t) is a vector of population
densities x(t) = (x1(t), . . . , xn(t))�. We focus on the solutions of (1.1) in the non-
negative cone R

n
+ := {x ∈ R

n : x1 ≥ 0, . . . , xn ≥ 0}. The function gi is a growth
rate of species i, which depends on the vector of population densities x(t). Depend-
ing on the property of the functions gi, System (1.1) can represent several kinds of
species interactions, e.g., predator-prey, competitive and cooperative interactions.

From several points of view, the dynamics of System (1.1) has been investigated.
For example, in [9, 11, 13, 14, 15], criteria which ensure species coexistence in the
sense of permanence are studied. In contrast with these studies, Franke and Yakubu
[4, 5, 6, 7] obtained several criteria which ensure that some species is dominant in
the system, i.e., the species eliminates other species from the system irrespective of
the initial population densities. More precisely, dominance is defined as follows:

Definition 1.1. Species k is said to be dominant if limt→∞ xi(t) = 0, i = {1, . . . , n}\k,
for every x(0) ∈ R

n
+ with xk(0) > 0.

We call the criteria which ensure dominance of some species an exclusion principle.
From the definition of dominance, it is clear that coexistence of n species in System
(1.1) is impossible if there is a dominant species. Therefore, from an exclusion
principle, we can derive a necessary condition for coexistence, which is important
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in population ecology. Moreover, from the point of view of evolutionary biology,
an exclusion principle is important to evaluate the possibility that a successfully
invading mutant species replaces a resident species (e.g., see Geritz et. al.[8]).

The purpose of this paper is to complement the exclusion principles obtained in
the previous works [4, 5, 6, 7]. In the studies of dominance, the following concept
of weak dominance is important:

Definition 1.2. Species k is said to be weakly dominant if the two subsets D−
k

and
⋃

i∈{1,... ,n}\k D+
i of R

n
+ are disjoint, where D+

i := {x ∈ R
n
+ : gi(x) ≥ 1} and

D−
i := {x ∈ R

n
+ : gi(x) ≤ 1}.

From the definition of D+
i and D−

i , the population density of species i is non-
decreasing and non-increasing in D+

i and D−
i , respectively. The intersection D+

i ∩
D−

i represents a null cline for species i, where the population density of species i
remains constant after one unit time. A point x ∈ ⋃n

i=1(D
+
i ∩ D−

i ) is a candidate
for a positive fixed point, which is a fixed point in the interior of R

n
+. Therefore,

if a weakly dominant species exists, System (1.1) does not posses a positive fixed
point. This implies that n species cannot coexist at a fixed point. It is known
that if all growth rate functions gi have exponential form, then weak dominance
implies dominance (see [1, 5]). However, it is also known that, in general, weak
dominance does not always imply dominance. For example, in [4, 5, 6, 7, 17], it is
shown, by using specific examples of (1.1) with n = 2, that stable periodic solutions
can exist in the interior of R

2
+ even if there is a weakly dominant species. More-

over, coexistence with chaotic oscillation is also possible under the assumption of
weak dominance (see [16, 17]). These facts lead to an interesting problem of find-
ing an additional condition that ensures that weak dominance implies dominance.
After the next preliminary section, we consider this problem and obtain such an
additional assumption (Theorem 3.2). In the final section, we apply our result to
specific population models, in which each growth rate function gi is a function of
the weighted total population density

∑n
i=1 aijxj(t).

2. Preliminaries

In this section, we introduce some notations and theorems, which are used in
the consequent sections.

Let (X, d) be a metric space with metric d. A map f : X → X defines a
discrete semi-dynamical system π : Z+ × X → X by π(t, x) = f t(x), where Z+ :=
{0, 1, 2, . . .} and f t(x) denotes the t-th iterate of x under f . Throughout this
section, we assume that f : X → X is continuous. Let ω(x) be an omega limit
set of x and γ+(x) be a semi-orbit through x, i.e., ω(x) := {y ∈ X : f tj (x) →
y for some subsequence tj → ∞} and γ+(x) := {y ∈ X : y = f t(x) for t ∈ Z+}.
For a subset N of X , we define ω(N) :=

⋃
x∈N ω(x) and γ+(N) :=

⋃
x∈N γ+(x). N

is said to be forward invariant if f(N) ⊂ N . For subsets N and Y of X , N is said
to be absorbing for Y if it is forward invariant and γ+(x) ∩N �= ∅ for every x ∈ Y .

The following lemma is used to construct a compact absorbing set of System
(1.1) in Section 4 (see also Hofbauer et al. [9], Lemma 2.1):

Lemma 2.1 (Hutson [12], Lemma 2.1). Let Y ⊂ X be open, and let N be open
with a compact closure N ⊂ Y . Assume that Y is forward invariant and that
γ+(x) ∩ N �= ∅ for every x ∈ Y . Then M = γ+(N) is a compact absorbing set for
Y .
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Now we introduce theorems of average Liapunov functions. In the next section,
the following two theorems are used to show that the extinction state of some
species is repelling or attracting, respectively.

Theorem 2.2 (Hutson [12], Theorem 2.2). Assume that X is compact and that S
is a compact subset of X with empty interior. Suppose that there is a continuous
function P : X → R+ which satisfies the following conditions:

(a) P (x) = 0 ⇐⇒ x ∈ S,

(b) sup
T≥0

lim inf
y→x

y∈X\S

P (fT (y))
P (y)

> 1 (x ∈ S).

Then there is a compact absorbing set M for X\S with d(M, S) > 0.

Theorem 2.3 (Kon and Takeuchi, [14] Lemma 14). Let X and S be the same as
those in Theorem 2.2. Suppose that there is a continuous function P : X → R+

which satisfies the following conditions:
(a) P (x) = 0 ⇐⇒ x ∈ S,

(b) inf
T≥0

lim sup
y→x

y∈X\S

P (fT (y))
P (y)

< 1 (x ∈ S),

(c) inf
T≥0

P (fT (x))
P (x)

< 1 (x ∈ X\S).

Then ω(X) ⊂ S, i.e., all solutions in X converge to S as t → ∞.

3. Main results

In this section, we obtain the main theorem (Theorem 3.2) of exclusion principles
for System (1.1) by using the theorems in the pervious section.

Since System (1.1) represents population dynamics, we only interest in its orbits
restricted in the non-negative cone R

n
+. In order to keep orbits starting in R

n
+

remain there and to exclude species extinction in finite time, we introduce the
following assumption:

(H): gi : R
n
+ → R+ is positive and continuous for each i = 1, . . . , n.

We see that if the assumption (H) holds, then both R
n
+ and its interior, intRn

+,
are forward invariant under System (1.1) and the map f : R

n
+ → R

n
+ defined by

f = (x1g1, . . . , xngn) is continuous.
Define Si := {x ∈ R

n
+ : xi = 0}, which is the set of the state where species i is

extinct. Denote
⋂n

i=1 Si by O, which is the set consisting only of the origin. From
the equation form of System (1.1), it is clear that each Si is forward invariant.
Therefore, every union and every intersection of Si is also forward invariant.

We define the limit set of time average of solutions as follows (see [10]):

µ(x) := {y ∈ R
n
+ : lim

j→∞
1
tj

tj−1∑
t=0

x(t) = y for some sequence tj → ∞},

where x(t) is a solution of System (1.1) with x(0) = x. In the following lemma,
we obtain the conditions that µ(x) must satisfy under the assumption that ln gi is
convex or concave:

Lemma 3.1. Let M ⊂ R
n
+ be convex, and let X ⊂ R

n
+ be compact with X ⊂ M ⊂

R
n
+. Assume that (H) holds. Suppose that X is forward invariant under (1.1). If

ω(x) ∩ (X\Si) �= ∅ for some x ∈ X, then
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(i) µ(x) ∩ D+
i �= ∅ if ln gi is concave on M ,

(ii) µ(x) ∩ D−
i �= ∅ if ln gi is convex on M .

Proof. Let x(t) = (x1(t), . . . , xn(t)) be a solution of (1.1) with x(0) = x. From
(1.1), we have

xi(T )
xi(0)

=
xi(T )

xi(T − 1)
xi(T − 1)
xi(T − 2)

. . .
xi(1)
xi(0)

=
T−1∏
t=0

gi(x(t))

lnxi(T ) − lnxi(0)
T

=
1
T

T−1∑
t=0

ln gi(x(t)).

The assumption ω(x) ∩ (X\Si) �= ∅ implies that there exist a sequence Tj → ∞
and a δ > 0 such that xi(Tj) ≥ δ for all j ∈ Z+. By the compactness of X and the
existence of δ, we have

0 = lim
j→∞

1
Tj

Tj−1∑
t=0

ln gi(x(t)).

For the case (i), we can apply Jensen’s inequality to the concave function ln gi as
follows:

1
Tj

Tj−1∑
t=0

ln gi(x(t)) ≤ ln gi(
1
Tj

Tj−1∑
t=0

x(t)).

Then there exists a subsequence, again denoted by Tj → ∞, such that

0 ≤ ln gi( lim
j→∞

1
Tj

Tj−1∑
t=0

x(t)).

This implies that µ(x) ∩ D+
i �= ∅. Similarly, we can prove the case (ii).

The following theorem is the main theorem of this paper, and it gives testable
exclusion principles for specific population models (see the next section).

Theorem 3.2. Let M and X be the same as those in Lemma 3.1, and let X+
i =

D+
i ∩X and X−

i = D−
i ∩X. Assume that (H) holds and X∩O = ∅. Suppose that the

function ln gk is convex and the functions ln gi, i ∈ {1, . . . , n}\k, are concave on M .
If X−

k and
⋃

i∈{1,... ,n}\k X+
i are disjoint, then ω(X\Sk) ⊂ (

⋂
i∈{1,... ,n}\k Si)\Sk.

Proof. Without loss of generality, we assume k = 1. By using Theorem 2.2, we
shall show that there exists a compact absorbing set X ′ ⊂ X\S1 for X\S1. Define
P1 : X → R+ as P1(x) = x1. It is clear that P1(x) = 0 if and only if x ∈ S1∩X , i.e.,
the condition (a) of Theorem 2.2 holds. Let us check the condition (b) of Theorem
2.2. For every x ∈ S1 ∩ X we have

σ1(x) = sup
T≥0

lim inf
y→x

y∈X\S1

P1(fT (y))
P1(y)

= sup
T≥0

lim inf
y→x

y∈X\S1

y1(T )
y1(T − 1)

· · · y1(2)
y1(1)

y1(1)
y1(0)

,
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where y(t) = (y1(t), . . . , yn(t)) is a solution of (1.1) with y(0) = y. By using the
continuity of f , we have

σ1(x) = sup
T≥0

T−1∏
t=0

g1(x(t))

= sup
T≥0

(
exp

[
1
T

T−1∑
t=0

ln g1(x(t))

])T

,

where x(t) is a solution of (1.1) with x(0) = x. Since the function ln g1 is convex
on M , Jensen’s inequality implies

1
T

T−1∑
t=0

ln g1(x(t)) ≥ ln g1(
1
T

T−1∑
t=0

x(t)).

Since X ∩ O = ∅, for every x ∈ S1 ∩ X there exists an i ∈ {2, . . . , n} such that
ω(x) ∩ (X\Si) �= ∅. Then it follows from Lemma 3.1 that for every x ∈ S1 ∩ X
there exists an i ∈ {2, . . . , n} such that µ(x) ∩ D+

i �= ∅ holds. By the assumption
X−

1 ∩ (
⋃n

i=2 X+
i ) = ∅, we see that for every x ∈ S1 ∩ X there exists a sequence

Tj → ∞ such that ln g1(
∑Tj−1

t=0 x(t)/Tj) > 0 for a sufficiently large j ∈ Z+. This
implies that σ1(x) > 1 for every x ∈ S1 ∩ X . Hence, by Theorem 2.2, we see that
there exists a compact absorbing set X ′ ⊂ X\S1 for X\S1

By using Theorem 2.3, we shall show that every solution with the initial condition
x ∈ X ′ converges to S′ :=

⋂n
i=2 Si ∩ X ′, that is, ω(X ′) ⊂ S′. Define P2 : X ′ → R+

as P2(x) =
∏n

i=2 xi and

σ2(x) =




inf
T≥0

lim sup
y→x

y∈X′\S′

P2(fT (y))
P2(y)

if x ∈ S′

inf
T≥0

P2(fT (x))
P2(x)

if x ∈ X ′\S′.

Then for every x ∈ X ′ we have

σ2(x) = inf
T≥0

T−1∏
t=0

n∏
i=2

gi(x(t))

= inf
T≥0

(
exp

[
n∑

i=2

(
1
T

T−1∑
t=0

ln gi(x(t))

)])T

,

where the continuity of the function f is used and x(t) is a solution of (1.1) with
x(0) = x. Since the functions ln gi, i = 2, . . . , n, are concave on M , Jensen’s
inequality implies

1
T

T−1∑
t=0

ln gi(x(t)) ≤ ln gi(
1
T

T−1∑
t=0

x(t)), i = 2, . . . , n.

Since X ′ is an invariant set with d(X ′, S1) > 0, it is clear that ω(x) ∩ (X ′\S1) �= ∅
for every x ∈ X ′. Then, by Lemma 3.1, we see that µ(x) ∩ D−

1 �= ∅ holds for
every x ∈ X ′. Therefore, the assumption X−

1 ∩ (
⋃n

i=2 X+
i ) = ∅ implies that for

every x ∈ X ′ there exists a sequence Tj → ∞ such that ln gi(
∑Tj−1

t=0 x(t)/Tj) < 0,
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i ∈ {2, . . . , n}, for a sufficiently large j ∈ Z+. This implies that σ2(x) < 1 for every
x ∈ X ′. By Theorem 2.3, we see that ω(X ′) ⊂ S′.

Remark 3.3. If ln gk is convex and ln gi, i ∈ {1, . . . , n}\k are concave on R
n
+, and

(1.1) has a compact absorbing set X for R
n
+\O satisfying X ∩ O = ∅, then weak

dominance of species k implies its dominance.

4. Applications

In this section, we apply our main theorem (Theorem 3.2) to the following sys-
tem:

xi(t + 1) = xi(t)hi(
n∑

j=1

aijxj(t)), i = 1, . . . , n,(4.1)

where aij > 0, i, j ∈ {1, . . . , n}. We assume that each hi : R+ → R+ satisfies the
following conditions:

(A1): hi is positive and continuous,
(A2): hi is strictly decreasing and hi(x∗

i ) = 1 at some x∗
i > 0.

Note that (A2) implies that hi(0) > 1 for every i ∈ {1, . . . , n}. Since the function
hi is a function of the weighted total population density, the null cline D+

i ∩D−
i is

the simplex
∑n

j=1 aijxj = x∗
i . We define Xij = x∗

i /aij .
Under the assumptions, by using Lemma 2.1, we can construct a compact ab-

sorbing set X for R
n
+\O satisfying X ∩ O = ∅ as follows:

Lemma 4.1. If (A1) and (A2) hold, then System (4.1) has a compact absorbing
set X for R

n
+\O satisfying X ∩ O = ∅.

Proof. By (A1), the non-negative cone R
n
+ is forward invariant. By (A2), there

exists an L > 0 such that p ≥ L implies hi(p) < 1 for all i ∈ {1, . . . , n}. Let
N := {x ∈ R

n
+ : (mini,j∈{1,... ,n} aij)(x1 + · · · + xn) < L}. N is an open subset of

R
n
+ with a compact closure N ⊂ R

n
+. Let x(t) be a solution of (4.1) with x(0) ∈ R

n
+.

If x(t) ∈ R
n
+\N , then xi(t + 1) < xi(t) holds for all i ∈ {1, . . . , n}. Suppose that

x(t) ∈ R
n
+\N for all t ≥ 0. Since hi is strictly decreasing, there exists a δ ∈ (0, 1)

such that maxi∈{1,... ,n} hi(p) ≤ δ for all p ≥ L. Then, by (4.1), we have
n∑

i=1

xi(t) =
n∑

i=1

xi(t − 1)hi(
n∑

j=1

aijxj(t − 1))

≤ δt
n∑

i=1

xi(0).

Hence,
∑n

i=1 xi(t) → 0 as t → ∞. This is a contradiction. Therefore, for every
x(0) ∈ R

n
+ there exists a t ≥ 0 such that x(t) ∈ N , i.e., γ+(x) ∩ N �= ∅ for every

x ∈ R
n
+. By Lemma 2.1, there exists a compact absorbing set M for R

n
+.

By using Lemma 2.1, we can also construct a compact absorbing set X for M\O
satisfying X ∩O = ∅ as follows. By (A2), there exists an l > 0 such that 0 ≤ p ≤ l
implies hi(p) > 1 for all i ∈ {1, . . . , n}. Then, by the same argument used above, we
can show that there exists an open subset V of M with compact closure V ⊂ M\O
such that γ+(x)∩V �= ∅ for every M\O. Hence X := γ+(V ) is a compact absorbing
set for R

n
+\O satisfying X ∩ O = ∅.

Theorem 3.2 with Lemma 4.1 leads the following corollary:
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Corollary 4.2. Consider System (4.1) with (A1) and (A2). Assume that the func-
tion lnhk is convex and the functions lnhi, i ∈ {1, . . . , n}\k, are concave on R+.
Then species k is dominant if Xi1 < Xk1, . . . , Xin < Xkn for all i ∈ {1, . . . , n}\k.

Proof. Each D+
i ∩D−

i is the simplex ai1x1 + · · ·+ ainxn = x∗
i . Then the condition

that Xi1 < Xk1, . . . , Xin < Xkn for all i ∈ {1, . . . , n}\k implies (
⋃

i∈{1,... ,n}\k D+
i )∩

D−
k = ∅. Furthermore, the convexity and concavity of lnhi on R+ imply the con-

vexity and concavity of ln gi(x1, . . . , xn) = lnhi(
∑n

i=1 aijxj) on R
n
+, respectively.

Hence, Theorem 3.2 with Lemma 4.1 completes the proof.

Remark 4.3. If ai1 = · · · = ain holds for all i ∈ {1, . . . , n}, then the condition that
Xi1 < Xk1, . . . , Xin < Xkn for all i ∈ {1, . . . , n}\k is reduced to the condition
that x∗

i /aii < x∗
k/akk for all i ∈ {1, . . . , n}\k. Furthermore, this condition becomes

necessary and sufficient for dominance of species k. Indeed, in this case, a segment
connecting the fixed points on the xk- and xi-axes becomes a continuum of fixed
points if x∗

i /aii = x∗
k/akk, and the fixed point on the xi-axis attracts some orbits

on the interior of the xk-xi face if x∗
i /aii > x∗

k/akk.

The following systems are specific examples of System (4.1):
 x1(t + 1) = x1(t)

λ

(x1(t) + αx2(t) + β)γ

x2(t + 1) = x2(t) exp{r − a(bx1(t) + x2(t))},
(4.2)

{
x1(t + 1) = x1(t)[exp{r1 − a1(x1(t) + x2(t))} + s]
x2(t + 1) = x2(t) exp{r2 − a2(x1(t) + x2(t))},(4.3)

where the parameters are positive and satisfy λ/βγ > 1 and 0 ≤ s < 1. We can
find the studies of (4.2) and (4.3) in [5] and [2, 16, 17], respectively. It is clear that
both (4.2) and (4.3) satisfy the assumptions (A1) and (A2). It is straightforward to
confirm that the following functions lnh1 and lnh1 are convex and lnh2 and lnh2

are concave (and convex):

lnh1(p) = ln{λ/(p + β)γ}, lnh2(p) = r − p,

lnh1(p) = ln{exp(r1 − p) + s}, lnh2 = r2 − p.

Hence, the following two corollaries are immediate consequences of Corollary 4.2
and its remark:

Corollary 4.4. Species 1 of (4.2) is dominant if

λ
1
γ − β >

r

ab
and

λ
1
γ − β

α
>

r

a
.

Corollary 4.5. Species 1 of (4.3) is dominant if and only if

r1 − ln(1 − s1)
a1

>
r2

a2
.

Note that Corollary 4.4 is identical to Theorem 5.2 of Franke and Yakubu [5],
which was obtained by different methods, and Corollary 4.5 improves Theorem 5 of
Yakubu [17], in which an exclusion principle was obtained to consider the possibility
that the endangered species x1 could be saved by its planting. It is known that
species 2 does not always eliminate species 1 in Systems (4.2) and (4.3) even if
species 2 is weakly dominant (see [5] and [17]). This shows that, in general, a
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weakly dominant speices k with concave ln gk does not always eliminate species j
with convex ln gj.
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