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Abstract

In order to verify the solutions of nonlinear boundary value problems by Nakao’s
computer-assisted numerical method on computer, it i1s required to find a constant,
as sharp as possible, in the a priori error estimates for the finite element approxima-
tion of some simple linear problems. For singularly perturbed problems, however,
generally it 1s known that the perturbation term produces a bad effect on the a pri-
ori error estimates, i.e., leads to a large constant, if we use the usual approximation
methods. In this paper, we propose some verification algorithms of solutions for non-
linear singularly perturbed problems by using the constant obtained in the a priori
error estimates based on the exponential fitting method with Green’s function. Some
numerical examples which confirm us the effectiveness of our method are presented.

Key word numerical verification, singularly perturbed problem, finite element method,
a priori constant.

1 Introduction

The numerical verification method for solutions of nonlinear differential equations realizes

a mathematically rigorous analysis on computer, which is often effectively applied to the

problem for which usual theoretical approaches no longer work. However, there have

been no practical verification methods which are suitable to the nonlinear singularly

perturbed problem up to the present. In this paper, we consider the verification method of

solutions for the following nonlinear singularly perturbation problem including parameter
e(1>»e>0):

{ Lu = —eu” —b(x)u' +c(x)u = f(u) in (0,1),

(1.1)

uw(0) =u(1) = 0,

where f : L*>(0,1) — L*(0,1) is a bounded continuous map, and we suppose that
b(z),c(z) € WL(0,1), and that there exists a constant v such that c¢(z) > v > 0.

Our arguments below are based on the finite element method on the interval (0,1)
with mesh : 0 = zp < 21 < --- < 2, < p41 = 1. Let h and A, denote the maximum
and the minimum width of subintervals, respectively. We denote the trial and the test
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fori=1,---,n.

Here, we try to extend and apply Nakao’s verification method [2] for the application to
the nonlinear singularly perturbed problem (1.1). In this method, it plays an important
and essential role to get an a priori error estimation of the finite element solution of the
linear problem, usually based on H}-projection. For the singularly perturbed problems,
however, when the usual finite element schemes are applied, it is known that the constant
in the a priori error estimates increases proportionally to the perturbation parameter e.

That is, from the error estimates of the H}-projection to the solution of —e¢” = ¢
(g € L°(0,1)), it is known that, if we use piecewise polynomials then we have
16 = Pradllee < Ce)B?|l9]lo0, (1.2)

where C'(¢) — oo if ¢ — 0. The estimates (1.2) imply that using such an approximate
method would lead the inefficient computational procedure for the verification for small
. Therefore, in this paper we paid attention to the exponential fitting technique, L-
spline method, studied by M. Stynes and E. O’Riordan [4][6][7][8]. That is, we carefully
and numerically estimated various kinds of constants appearing in the error analyses
of their methods. And we succeed in estimating an a priori constant, such as in (1.2),
numerically with independent of or less dependent on the perturbation parameter, and

to apply it to the verification of solutions for the nonlinear singularly perturbed problem
(1.1).

In Section 2, we show the computational result of the constructive a priori error es-
timation of constants to the linear problem. Especially, as for the convection-diffusion
problem of the subsection 2.1, we obtained the error estimation of O(h) which is inde-
pendent of €. In the subsection 2.2, the theoretical analysis yields some constructive
error estimations to the reaction-diffusion problem, which can be more effectively used
for the verification of the nonlinear problem compared with usual methods, even though
it still depends on the perturbation parameter. In the section 3, an actual verification
algorithm is shown, and some verification results are presented in the section 4.

2 Constructive a priori error estimates for a linear singu-
larly perturbed problem using Green’s function

In this section, we try to compute the constant in the a priori error estimation of finite

element approximations for linear convection and reaction diffusion equations. We deter-

mine two different kinds of constants corresponding to the convection and the reaction
diffusion problems, respectively.

2.1 Convection Diffusion Problem

We first consider the following linear convection diffusion problems.

{L¢ = —¢¢" —b(z)¢'+c(z)¢ = g in (0,1),



where g € L°°(0,1), and b(z), c(z) € WL (0, 1) are given functions satisfying b(z) > 8 > 0
and ¢(z) > v > 0.
Now we define the bilinear form of (2.1) by, for each o, € H}(0,1),
(L(QD, ¢) = 5(9‘9/7 ¢/) - (bg‘ola ¢) + (CQ‘% ¢)7
CL}L(QD, Lb) = 6(99/7 ¢I) - (bgola ¢) + (6997 lr/))a

where (-,-) denotes L? inner product on (0,1). Then, the projection P, : Hi — 5} is
defined as

a(¢p — Pro,vn) = 0, for all ¢, € V. (2.2)

And we also define the approximation P;¢ = ¢5 € S} of solution ¢ to (2.1), which we
call the P;-projection, as follows :

ar(Ph.Yr) = a(d,Pn), for all ¢y € Vi (2.3)
Now, M. Stynes and E. O’Riordan [7] introduced the following L-spline {¢;}"; and L*-
spline {#,;}7_, which constitute bases of S}, and V}, respectively, satisfying fori =1,---,n
Lo; = —epl —bpl+ep; = 0 in [0, 1\{z1, - 2n},
wi(zk) = 6F for k=0,---n+1,
L, = —epl! +bpi+ey; = 0 in [0,1]\{z1, - 2.},

Yi(zg) = 6F for k=0,---n+1,

where 6% stands for Kronecker’s delta.
We now define the Green function G; = G(z, ;) by the following equation, which is

spanned by {i5 17,
ap(w, Gi) = w(z;) for all w € Hy(0,1).

Remark 1 [7] For each i € {1,---,n}, the Green function G;(-) € C[0,1] is character-
ized by

—eG!(2) + bGl(z) + eGi(z) = 0 in [0,1]\{z1, -, 2.},

lim (eG(z) — bG;(x)) — lim (eGi(z) — bG;(z)) = —6F,

o} oy
where z,, =z, — 0 and x;: =z + 0. Moreover, G;(z) lies in V},.
Lemma 2.1 For each i € {1,---,n}, the Green function G;(-) satisfies
eGi(z) — bGi(x) = £G1(0) +/Ox cGi(t) dt — Hy(z), @€ [0,1\{zr,-2,},
where

1 if x>,
Hi(m)_{o if 2 <z



Proof: By Remark 1, we have

/0 cGit) di = kz::l/xk_ (G (1) — b1 dt+/ (G (1) = G (1)) dt
= S[fGQ() bGi ()], +[eGi(t) - 0G (]G,
— (CGe) - 56ta)) - 2600
3 [(cer) - butep)) — () )]

k=1

which proves the lemma. |

Lemma 2.2 For each i € {1,---,n} and for arbitrary z € (0,1), we have

1

0<Gi(z) < =,

<Gile) < 3

Proof: From [7], it follows that G;(z) > 0 for all 7 € {1,---,n} (cf. the proof of Lemma

2.4 in this paper). We assume that there exists z € [z;_;, ;] such that G;(z) > 1/4.
Then, from Lemma 2.1 we have

cGU(z) = BGi(z) + Gl (0) + /0 T o) di — Hi(z)

bGi(2) —
BGi(z) —
0,

VoIV v

where we have used the fact that G%(0) > 0 because G;(z) > 0 and G;(0) = 0. Hence we
obtain 1/8 < G;(z) < Gj(z;). It means that 1/8 < G;(1) from the inductive argument,
which contradicts with G;(1) = 0. |

Lemma 2.3 Let ¢ be a solution of (2.1). Then for all x € (0,1)

1., _s, _B,
¢ < (205 + o1 03 ) gl
where K = 1/ max{f3,v} and

2 1 . . 1 .

Cr=ZK[bl%, Ca=Z(1+Kllclw+2K[b]]), Cs= =(1+ Kllc]loo)-
g p g

Proof: We first show that ||¢]|c < 1/ max{F,7}||g]|cc- Let y1(z) = K1(1—2)]|g|lcc L P ()

and y3(z) = K3||gl|eo £ ¢(z) where Ky, K, are positive constants. Then we have that

y1(0) > y1(1) = 0 and y2(0) = y2(1) > 0. Hence if K3 = 1/4 and K3 = 1/7 then we find

Lyp = Kib(z)+ (1=2)e(@)]llgllc g | Lyz = Kie(a)|lglla g
> K109l £ g > Kyvllgll g
> 0, > 0.



Therefore, if we choose K := 1/ max{f3,v}, then we obtain ||¢||sc < K||g||sc by the
maximum principle.
Now let go(z) = g(z) — ¢(z)¢, and let

x 13 1 “
g = [“go@etVdt ga@)= [ goe O ar
0 T

where b(z) := / b(t) dt > 0. Then we get
0

From (2.4)-(2.5) we have
/0 N—edeB Y di = e (2)eH®) 4 ! (0)e2O) = g, (2), (2.6)

1 17 17 17
/ (—ede POY @ = e/ (1)e™ ) 4 o (z)e+5®)

= (@) +2 [0 O] — 2n(a), (2.7)

where

Rewriting (2.6) as
e (2) + ¢/ (0)e™) = gy ()=, (2.8)
we have the following linear system from (2.7) and (2.8).

ed'(1) -
—e¢'(1)e”

o=

¢(0)e” M = —gy(1)e=D),
M e (0) = g5(0) — 26(0).

. 1
Since b(1) := / b(t) dt > 8 > 0, this system is nonsingular so that
0

1 _emth) \ 7 1 1 et 0
e (1) 1 o 1 — e—2b(1) o= Th(1) 1 =

Therefore we obtain

( [#'(1)] ) < 1;( 1 et ) ( g1 (1)e=£2(D)| )
(0 | = e _ o \ eth) 12(0)] + 215(0)]



And we have

IN

13 1 10 N
‘gl(l)e_?b(l)‘ = HQOHOO/O e~ W)= gy

L g
H90”oo/ o= (1-t) g4
0

= Sloollee (1= 7%).

/ L o(t)e- KB dt‘
0

IN

1 13 1 12
lg2(0)] = ‘/ go(t)e_?b(t) dt‘ < Hgo||oo/ LU
0 0

1
B
lgoll [ e a1
0
£ _E
= Sllgolleo (1-¢75).

IN

Moreover, we have

k(0)] =

/1 8(1) (b’(t)e—%é(t) _ Me-gm)) P

£
Ly —2b(®) U 20 (e b5(0)
< /b(t)qb(t)e HO ) 4 - / b(t)2(t)e= 00 dt
0 0
T 1 .
< W lolléloe [ O et bl Nlble [ e O d
0 19 0
b s 1 L 5
< Wleclollee [ €5 et oI e [ o5
0 € 0
€ _B 1 B
= Hb'HooHd)HooE(l—e E)"'HbH?)oH(bHooE(l—e :).

Since ||gol|co < (1 4+ K||¢||o0)]|9]|o0, We obtain

GO < T T 2l + 2B 6]
>~ 1_e_¥ ﬁ 9o||l oo ﬁ o0 o0 56 foe) o]
B
1 14+e ¢ 2 2
[Tl + W ellle + B
1 i . 2
< 0+ Klelloo+ 2K ) glloo + 5 K01 gl (2.9)

Finally, we have the following estimate

g1 (z)e= )| = ‘/Og”go(t)e—%[ém—é(t)] dt‘ < ”gOHOO/Oze—%[B(z)—a(t)] dt
< ol [ e FE0 at
< SO+ Klel)lolle: (210)
Combining (2.9) and (2.10) with (2.8), we obtain the desired conclusion. |



Theorem 2.1 Let ¢ and ¢ be solutions of (2.1) and (2.3), respectively. Then

where

1 1.
Co = @Hb/”m (Cl +eCy+ ﬁC:g) + le ||C/Hoo
Here, constants C;, 1 <1 < 3, and K are defined in Lemma 2.3.

Proof: From the property of Green’s function, we have

(0 —¢p)(zi) = an(¢ —7¢ian’) = an(9,Gi) — (g9,G)
= (@, (b= b)Gi) + (¢, (€ — ) Gy).

Hence, we have

(& = &3) ()] < 161,116 = bllcl|Gilloa + Nl @l cclle = el|z, | Gil o

Now we estimate each term in the above. First, note that

I0=ble < max [ (O] di < ech,
2 Ty—1

IN

1
le=eler < [ lle=cllc dt < ]| ch

Since the estimations of ||¢[|s and [|Gj||s follow from Lemma 2.2 and 2.3, respectively,
it suffices to bound ||¢'||r,,. From Lemma 2.3, we obtain

1
10l = [ 16/ @)da
trl, s _8
< [ (Cot s et ot o) gl da

1
< %a+%@+aﬂww

Thus the conclusion follows immediately. |

Theorem 2.2 Let ¢ and ¢; be solutions of (2.1) and (2.3), respectively. Then
¢ — &%

where C = C(A) =114+ (2— A1y for A €[0,1) and 11, T2 are constants satisfying

o0 < Chl|g||so,

_ 4 / . T if CO — 07
T = 52 + 45,),Hb ||oo (Cl + €C2)7 T2 = { maX{T, Co/(l _ /\)} otherwise,
where .
= T v Ul v S K| )bl .
T = grao s L (PlleCs + Kl )b

Moreover if Cog = 0 then we can choose that A € [0,1].
(Constants C;, 0 <1 < 3, and K are same as in Theorem 2.1.)



Proof: We prove the theorem using the maximum principle. First, we consider the case
of Cp = 0. Notice that, by the maximum principle, if the function r(z) > 0 satisfies
L(+(¢ — ¢5)) < Lr(z) for each z € (zi_1,;), then we have +(¢ — ¢5) < r(z), for all
x € [z;-1,2;], because ¢(z,-1) = ¢ (2;—1) and ¢(z;) = ¢ (z;). From this property, we
derive the maximum norm estimates of local error in each subinterval.

For each z € (2;_1,z;), we have

LEE6—61) = L(6) - L(£7)
= £(-ed" — b’ + co)
Hg = (b= 86+ (c— )0}
lgloe + 116 = blll s’ + lle = clocl -
Igloe + 1ol 1+ 11l o

IN A

Hence we get from Lemma 2.3

T £ 1 —éz
Uxo-61) < (S01+Ca) e @ Wlchlgl-
+ 1+ (C5/|8lloo + Kl l|o0) A] [g]loo-
Now, for each A € [0, 1), define r(z) by
La
r(z) = me 2=7h|g||eo + T2 [h + Aziz1 + (1 = Nz — 2]]|9]]co- (2.12)

Then we have

_ 2 Bb .
Ir(@) = = (—ﬁ—+ﬁ—5+c) e %7 hl|g]|os

try[b+c(h4+ Az + (1= Nz — 2)] 9]0
> (f— T 7) &R glloo + 72 [8+ (1 = A)7A][1g]o-
Hence if
"oz ﬁ(a +2C3) ¥l
- 1 () Cs + KNI

N Ry

then, noting that e 2v < e_ﬁz, we have L(+(¢ — ¢5)) < Lr(z) on [z;_1,2;] . In this
case, we can choose that A € [0,1] since r(z) > 0if A = 1.

Next, consider the case of Cy # 0. In that case, we also define r(z) by (2.12), then
we obtain a positive lower bound of r(z) satisfying r(z) > m2(1 — A)h||g||~. Hence the
function r(z) satisfies the condition of the maximum principle for the corresponding error
estimation if 75(1 — A)A||g]|cc > Coh||g||co. Thus, we obtain the following condition on
2.

Co
> .
22N

Therefore, the proof is completed since |r(z)| < [r1 + (2 — A)72] h]|g]| o in [ziz1,2;]. B
Note that the a priori constant C' in this theorem still includes the perturbation

parameter £, but one can readily see that it is essentially independent of this parameter.
As a special case, we have the following corollary.



Corollary 1 Ifb(z) = 8 and c(z) = v are constant then

h
16 = Silleo < ZI9lloo- (2.13)

Moreover if 3 > ~vh then the estimation (2.13) attains the minimum value of C(X) in
Theorem 2.2 with respect to all A € [0,1].

Proof: In this case, we have ||| = ||¢/||cc = 0 in Theorem 2.2. Hence, we find
2- X h—
CA)=—"—"——, C'(N)= 1h =B 5
A4 (1= A)yh [64 (1= A)vh]

Therefore C'(1) = 1/3, and, moreover, C'(A) is a monotone decreasing, if 3 > vh. Thus,
we have the desired conclusion immediately. |

2.2 Reaction Diffusion Problem

We consider the following linear reaction diffusion problems.

Ly = —e¢"+e(x)p = g in (0,1),
{ $(0) = (1) = 0, (2.14)

where g € L>°(0,1) and ¢(z) € WL (0,1) with ¢(z) > v > 0.
For all p,v € H3(0,1), we define the bilinear form associated with (2.14) by

a(p, ) = e(@, ) + (e, ),
an(p, ) = e, ¥) + (ep,9).
Then, the projection Py, : Hi — S} is defined as
a(¢p — Pro, ) = 0, for all ¢, € 5. (2.15)

And we also define the approximation P;¢ = ¢5 € S} of solution ¢ to (2.14), which we
call the P7-projection, as follows :

an(Ph,¥n) = a(@,¥n), for all ¥y, € 5. (2.16)

Then we define the basis {¢;}™, of Sy, L-spline, by the solutions of the problems for
i=1,---,n

_599{£l+599i =0 in [0, 1\{z1, -2},
pilzg) = 6F for k=0,---n+1.

Remark 2 Note that the linear operator in (2.14) also satisfies the mazimum principle.

(see [4] as b(z) =0)

As preciously, we define the Green function G; = G(z,z;) which is spanned by {¢;}",
by the solution of following equation.

ap(w, Gi) = w(z;) for all w € Hy(0,1). (2.17)

We have the following equivalent formulation of G;.



Lemma 2.4 For eachi € {1,---,n}, the Green function G;(-) € C[0,1] is characterized
by

—eG!(z)+eGi(z) = 0 in [0,1)\{z1, -, 2}, (2.18)
Gi(O) = Gi(l) =0, (2.19)
lim (eGi(z)) — lim (eGi(x)) = —6F, (2.20)

where the notation that x;  and .r; are the same as the one which was defined in Remark
1. The above G;(z) is well-defined and lies in Sy, with Gi(z) > 0. Moreover let R = (Ry, ;)
be a matriz with Ry ; = ap(pr, ), (1 <k,j < N) then ||Gilloo < ||R7|o where || ||o.

means matriz maimum norm.

Proof: For each ¢ € {1,---,n}, we set
G;= Zaégoj.
i=1

Then (2.17) is equivalent to the following linear system.

Za;ah(¢k7¢j) = 6Zk7 k= 17"'7”- (221)
=1
Observing that
Ry = an(pr05) = e(@p @) + (e ¢))
n+1
= Y elorli |+ (o, —e@ + cp))
=1
n+1
= Y elendlli s
=1

and noting that R is a tri-diagonal matrix from the property of base functions, we have

R = elonpil2  +elor@ilit' = egi(zy) — egi(af) > 0,

Rip-1 = 5[9%992—1];:_1 = epp_q(z;) < 0,
Riprr = elprphplat = —eghp (=) < 0. (2.22)
From
sinh <\/§(x — 93k—1)) /sinh (\/ghk) if z€[rp_1,7k]
¢r(z) = sinh <\/§($k+1 - ac)) / sinh (\/ghk+1) if x € [zp, xp4] (2.23)

0 otherwise

10



we have ¢} (z)) = ¢}_;(z]) = 0. Hence (2.21) can be rewritten as

8F = a1 Rpp1 + akRes + ol Rp
= ¢ (042—1%02—1 + aiﬁﬁﬁc) (931;) —¢€ (042992 + 0‘2+199§c+1) (w}f)
_ 7 N PN 1 N — 7 ! PN 7 ! +
= € (0%—19%—1 + o + ak+1%‘9k+1) () —¢ (0%—19%—1 + oo + ak+1$‘9k+1) (=)
— G(af) - G,

Therefore it follows that conditions (2.18)-(2.20) are equivalent to (2.17).

Next, we show that the coefficient matrix R is an M-matrix [1]. This can be easily
proved as below by the fact that R is a symmetric and Z-matrix (all off-diagonal elements
are nonpositive) from the definition of a;(-,-) and (2.22). Since

Ry 1p = —5992(56;:_1)7 Ry = 54,92(:3];“),
we obtain
Ri_1p+ Rpp+ Repr e = —eoh(af_)) +egi(zy) —egr(af) + ek (Thyy)

Tr41 Ty

= ([T [ e an
Tk Tr_1
Tri1 TE

= ([ [ et d
Tk Tr_1
Tri1 Tk

> ([ [T e a
Tk Tr_1

> 0.

Hence we have that R is a strictly diagonally dominant matrix, which means R is an
M-matrix. Thus, G;(z) is well-defined and lies in S}, with G;(z) > 0, because M-matrix
is nonsingular, all elements of its inverse matrix are nonnegative and the components of
the right-hand side of (2.21) are nonnegative.

Next we show that G;(z) attains the maximum value at the end point on each subin-
terval.

Let
i(m —zp—1) — @r(2) if z€fzp_y,zk
ri(z) = ﬁ(wk_,_l —z) —er(z) if =€ [or,rp4]
0 otherwise
for k = 1,---,m. Then, since r(z;_1) = r%(z;) = re(z;41) = 0 and Lrg(z) > 0 in each

subinterval, we obtain ri(z) > 0 from the maximum principle. And each Green’s function
satisfies Gii(z) = ajor(z) + . @r+1(7) on each subinterval. Therefore it follows that

< |04§c|99k(f6)‘|‘la2+1|99k+1(33)
< max(|ag|, [ajq]) - (0r(2) + ry1(2))
<

max(|ag], [agiq]),

|O‘§C4Pk($) + a;ﬂ—l Crg1(7)]

because ri(z) > 0. Thus, we get the following estimate.

n
|1Gilloe = m]j\X|(R_1)k,z‘| < mgxm?XI(R_l)k,jl < mgxz (R ksl = 1R o »
i=

11



Therefore the proof is completed. |

Theorem 2.3 Let ¢ and ¢5 be solutions of (2.14) and (2.16), respectively. Then
(¢ — ¢3) (zi)] < Cohl|g]los i=1,2,--,m, (2.24)
where Co = 1/7||R™ |1 ||¢/|| o, where R is the matriz same as in Lemma 2.4.

Proof: From the property of Green’s function, we have

(6 —df)(z:) = an(d— ¢, Gi)
= (¢,(¢—)Gy).

Hence the nodal errors can be estimated as
(¢ — 8@l < [9lleclle = ellr, |Gl oo
1. _
< ;lIR ewlle'looPllg oo

For the numerical computation of ||R™!||,, with guaranteed error bound, refer, e.g.,
[3]-
Theorem 2.4 Let ¢ and ¢ be solutions of (2.14) and (2.16), respectively. Then
16 = Ghllee < C(h,€)llgllo0

where

1 1 min
C(h,e) = max{— <1 + —Hc'||ooh) o(h,e)+ 2e_\/¥h2 Coh, Coh} ,
Y Y

6(h,e) = (1 —e” 33)2 < L.

Here, Cy is same as in Theorem 2.3.

Proof: We use the maximum principle like the convection diffusion case. We now con-
stitute a function r(z) which satisfies with L(4(¢—¢5)) < Lr(z) and (¢ — ¢5)(zi—1) <
r(zi—1), £(¢ — ¢5)(z;) < r(z;) in [z;-1,2;] for i = 1,---,n as below.

We first estimate L(4(¢ — ¢5)) as follows.

Lx(6—¢5)) = L(*e)— L(*eh) = +(—e¢" +¢) = £{g + (¢ — )¢}

<l +lle = el ol
< lgllo + 1€l

1
< (1421 gl (=i8)

where we have used the estimate ||@]|s < 1/7]|¢||sc Which is following by the similar
argument to that in the proof of Lemma 2.3. Here we solve the following ordinary
differential equation with Cy := Coh||g||s-
—€T//($) + ET(.f) - g in (‘ri—la xi)a (225)
r(zi1) =r(z;)) = Co.

12



Then the solution of (2.25) is written as

1 [g \/E(z_ —z) \/E(z—x) —\/Eh A f(zi_1—7T) \/E(z—z) :|
rfzg)= —— |2 (1 —eV ¥l —eVe e Ve + Cp eV Tt +eVe : .
) 1+4e VER c( )+6 )

Since r'(z) = 0 at z = (z;—1 + ;) /2, we obtain

1 c g 2 T 1y A ~
()] < 7\/7}11%)({5 <1 - e_\/;h?> + 2e_\/;h7Co, Co},
1_|_e— ch C

where h; = x; — x;_1. Therefore, the maximum principle completes the proof. |

3 Numerical Verification Algorithm

The nonlinear singularly perturbed problem (1.1) is transformed to fixed point equation
such that w = F(u) (:= L™' f(u)), where F’ becomes a compact operator from L>°(0,1)N
H}(0,1) to itself. We apply the verification method similar to that in [2].

Instead of the H{-projection in [2], using the P,-Projection defined by (2.2) and
(2.15), we have the following decomposition of the fixed point equation u = F(u).

Pou = PyF(u),
(I —Pu = (I- Py)F(u).

Let 45 be an approximate solution of (1.1) which satisfies ap, (45, ¥n) = (f(45), ¥n),
for all ¥y, € V},, and let

Np(u) = Ppu— [I — F'(ap)];  (Pou — PuF (). (3.1)

Here [ — F'(45)]; " is an inverse operator of Py(I — F'(@5))|s, : Sx — Sp and F'(@5) is
a Fréchet derivative of F'(u) at @5. Then (1.1) is equivalent to the following fixed point
equation.

u="Tu, Tu = Np(u)+ (I — Pp)F(u).

Defining the candidate set, a set expected to include the desired solutions, as U =
a5 4+ Wy, + [[e]],, € L>=(0,1) N H}(0,1), where

Wh = {wh € Sh - Wh = ZWZSO“ WZ = [_wiawi]a w; Z 0}7
=1
[ol., = {a€L=(0,1)nHI(0,1):dl|w < a},

if the condition

holds, then, by Schauder’s fixed point theorem, there exists a function @ € U such that
Li = f(a).

13



In order to estimate the error ||¢ — Py¢||, we use following triangle inequality

16 = Prdlloe < (|6 = Pidlloc + (| Prd — Prol|oo. (3.4)

For the first term, we use the estimation already discussed in the previous section. For the
second term, by the fact that a(Preo,¥n) = an(P; ¢, ¢n), for all iy, € V3, it is essentially
independent of ¢, because of Lemma 2.3, Theorems 2.1 and 2.3. Actually, it is easily
seem that, by using matrices A = (A;;) = [a(p;, ¥i)] and A" = (AL)) = [an(gj, ¥i)], we
have || Pf¢ — Prholloo < Chl|g|oo, where C := 3||A~1 — (A")~Y|,, which is followed by

the properties of base functions of S, Vj.

From the viewpoint of the effectiveness of computational cost, usually, we use the
residual form below instead of the original equation (1.1) [9].

That is, for the nonlinear singularly perturbed problem (1.1), we define the solution
u of the following linear singularly perturbed problem.

—5ﬂ”—b(m)ﬂ' c(ﬁm)ﬂ = f(a;) in (0,1),

0)=a(1) = 0.

Then, defining vg = u — 45 we get the following estimates

l[wollee < CRI|F (@)l

by the same constant C'in Theorems 2.2 and 2.4, because #;, coincides with P;-projection
of 4. Thus the concerned problem is reduced to find w := v — u satisfying

—ew"” —b(z)w' + c(z)w = flw+wvo+4;)— f(ag) in (0,1),

w(0)=w(l) = 0. (3:5)

Then, since the approximate solution of (3.5) is taken as 0, the candidate set for the
solution is usually taken of the form W = Wy + [[a]] .

4 Numerical Examples

We now present some numerical examples, to show the effectiveness of the Theorems 2.2
and 2.4. In the below, the verifications were carried out by using the residual form (3.5).
We first consider the following example of the convection diffusion problem.

Example 4.1

Liu = —eu” —bu'+cu = 1-w* in (0,1),
u(0) = u(1)

Il
=

where b = 1/(27)?, ¢ = 1.

We omit detailed and actual computational procedures for checking conditions (3.2)
and (3.3) (see, e.g., [2][9] etc.). The approximate solutions are shown in Figure 1.

Table 1 shows the verification results for uniform mesh with n = 999 using L-spline
in this paper. We also illustrate, for comparison, in Tables 2 to 3 the results using the
usual verification algorithm with piecewise linear functions as in [9]. We show that the
distribution of mesh size for non-uniform mesh in Figure 3.

14



Figure 1: The approximate solutions of Example 4.1.

In Tables 1 to 3 and 4 to 6, the exact solution is enclosed by a5 + W), + [[a]], + vo,
i.e., "Total”’s mean the total error of the approximate solution #;. ”Fail”s in tables
mean that we could not get the solution « with guaranteed error bound, in the sense of
in infinite dimension, but we could get the approximate solution with guaranteed error
bound, in the sense of finite dimension.

We next consider the following example of the reaction diffusion problem.

Example 4.2 (Allen-Cahn equation)

Lyu = —eu"+eu = (c+ Du?—o? in (0,1),
u(0) = u(1) =0,

where ¢ = 1/10.

The approximate solutions are shown in Figure 2.

Tables 4 to 6 show the comparison of the effectiveness for L-spline with uniform mesh
and the usual piecewise linear finite element method with both uniform and nonuniformr
meshes for n = 999. Figure 3 shows that the distribution of mesh size for non-uniform
mesh. By these tables, it is seen that if we use the uniformed mesh then L-spline yields
always better approximation than the usual piecewise linear finite element. ”Singular”
in Table 5 means that we could not get the approximate solution with guaranteed error
bound, in the sense of finite dimension. As shown in Figure 4, the usefulness of L-spline
method should be more and more clear compared with the usual method when ¢ tends
to be very small.

The numerical computations were carried out on a Dell Precision 650 Workstation
by using INTLAB, a tool box in MATLAB developed by Rump [5] for self-validating

15



Table 1: L-spline (Uniform) for Example 4.1

1/e Total a IWh|eo lvo || oo
100 4.8819e-2 2.7863e-3 1.9576e-2 3.7979e-2
1000 | 4.9337e-2 2.7858e-3 1.9554e-2  3.7979e-2
10000 | 5.1568e-2 2.7913e-3 1.9621e-2 3.7979e-2
100000 | 6.0336e-2 3.0415e-3 2.0178e-2 3.7979%e-2
1000000 | 6.3029e-2 3.7266e-3 2.1801e-2 3.7979e-2
Table 2: Piecewise Linear (Uniform) for Example 4.1
1/e Total a W] eo lvo || oo
100 9.4484e-3 1.0157e-5 1.1025e-4  9.3539e-3
1000 6.4661e-2 6.6864e-4 6.1947e-4  6.3552e-2
10000 | 9.1327e-1 8.7964e-2 3.8504e-3  8.229%e-1
100000 Fail 00 00 2.0192e4+1
1000000 Fail 00 00 5.4777e+2
Table 3: Piecewise Linear (Non-Uniform) for Example 4.1
1/e Total a [|[Wh]| o l|vo|]co
100 5.1665e-3 5.2703e-6 8.1393e-5  5.0948e-3
1000 2.4911e-2  1.4200e-4 2.9216e-4  2.4568e-2
10000 | 2.7563e-1 9.4780e-3 1.2795e-3  2.6568e-1
100000 Fail 00 00 6.7784e-0
1000000 Fail 00 00 2.0396e+2
algorithms.
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Table 4: L-spline (Uniform) for Example 4.2

1/e Total a [|wh]] o [|70]| 00
1000 | 4.1860e-5 2.8959e-9 1.7250e-5 2.4666e-5
10000 | 4.3532e-4  2.9477e-7 1.8943e-4 2.4645e-4
100000 | 4.9995e-3  3.2202e-5 2.5339e-3  2.4621e-3
400000 | 2.7049e-2  7.1905e-4 1.6925e-2 9.8181e-3
500000 | 3.9078e-2 1.3660e-3 2.6007e-2 1.2256e-2
600000 | 5.8141e-2 2.5107e-3 4.1667e-2 1.4691e-2

Table 5: Piecewise Linear (Uniform) for Example 4.2
1/e Total a |wh || o [|v0]] 0
1000 | 4.1922e-5 2.4793e-9 2.6180e-5 1.5934e-5

10000 | 4.6950e-4 2.8032e-7 3.0774e-4 1.6279%e-4

100000 | 6.7719e-3  4.4062e-5 5.0283e-3 1.7376e-3

400000 | Singular — — —

500000 Fail 00 00 9.8976e-3

600000 Fail 00 00 1.2015e-2

Table 6: Piecewise Linear (Non-Uniform) for Example 4.2
1/e Total o [|wh]] o [|70]] 00
1000 | 3.0688e-5 7.3430e-9 1.8028e-5 1.3748e-5

10000 | 5.5890e-5 4.3732e-9 3.5027e-5 2.1099e-5
100000 | 6.3696e-4 5.0772e-7 4.2204e-4 2.1622e-4
400000 | 3.0715e-3  1.0212e-5 2.1771e-3  8.9695e-4
500000 Fail 00 00 1.1304e-3
600000 Fail 00 00 1.3611e-3
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