Generating Function Associated with the Determinant Formula for the Solutions of the Painlevé II Equation

Joshi, Nalini
School of Mathematics and Statistics F07, University of Sydney

Kajiwara, Kenji
Faculty of Mathematics, Kyushu University

Mazzocco, Marta
DPMMS

http://hdl.handle.net/2324/11833
Generating function associated with the determinant formula for the solutions of the Painlevé II equation

N. Joshi, K. Kajiwara
M. Mazzocco

MHF 2004-14

(Received April 23, 2004)
Generating Function Associated with the Determinant Formula for the Solutions of the Painlevé II Equation

Nalini JOSHI
School of Mathematics and Statistics F07, University of Sydney,
Sydney, NSW 2006, Australia

Kenji KAJIWARA
Graduate School of Mathematics, Kyushu University,
6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8512, Japan

Marta MAZZOCCH
DPMMS, Wilberforce Road, Cambridge CB3 0UB, UK

Abstract
In this paper we consider a Hankel determinant formula for generic solutions of the Painlevé II equation. We show that the generating functions for the entries of the Hankel determinants are related to the asymptotic solution at infinity of the linear problem of which the Painlevé II equation describes the isomonodromic deformations.

1 Introduction
The Painlevé II equation (PII),
\[\frac{d^2 u}{dx^2} = 2u^3 - 4xu + 4 \left(\alpha + \frac{1}{2} \right), \tag{1} \]
where \(\alpha \) is a parameter, is one of the most important equations in the theory of nonlinear integrable systems. It is well-known that PII admits unique rational solution when \(\alpha \) is a half-integer, and one-parameter family of solutions expressible in terms of the solutions of the Airy equation when \(\alpha \) is an integer. Otherwise the solution is non-classical [12, 13, 15].

The rational solutions for PII(1) are expressed as logarithmic derivative of the ratio of certain special polynomials, which are called the “Yablonski-Vorob’ev polynomials”, [16, 17]. Yablonski-Vorob’ev polynomials admit two determinant formulas, namely, Jacobi-Trudi type and Hankel type. The latter is described as follows: For each positive integer \(N \), the unique rational solution for \(\alpha = N + 1/2 \) is given by
\[u = \frac{d}{dx} \log \frac{\sigma_{N+1}}{\sigma_N}, \]
where \(\sigma_N \) is the Hankel determinant
\[\sigma_N = \begin{vmatrix} a_0 & a_1 & \cdots & a_{N-1} \\ a_1 & a_2 & \cdots & a_N \\ \vdots & \vdots & \ddots & \vdots \\ a_{N-1} & a_N & \cdots & a_{2N-2} \end{vmatrix}, \]
with \(a_n = a_n(x) \) being polynomials defined by the recurrence relation
\[\begin{align*}
 a_0 &= x, & a_1 &= 1, \\
 a_{n+1} &= \frac{da_n}{dx} + \sum_{k=0}^{n-1} a_k a_{n-1-k}. \tag{2}
\end{align*} \]
The Jacobi-Trudi type formula implies that the Yablonski-Vorob’ev polynomials are nothing but the specialization of the Schur functions \([9]\). Then, what does the Hankel determinant formula mean? In order to answer this question, a generating function for \(a_n\) is constructed in \([5]\):

Theorem 1.1 \([5]\] Let \(\theta(x, t)\) be an entire function of two variables defined by
\[
\theta(x, t) = \exp \left(2t^3/3 \right) \text{Ai}(t^2 - x),
\]
where \(\text{Ai}(z)\) is the Airy function. Then there exists an asymptotic expansion
\[
\frac{\partial}{\partial t} \log \theta(x, t) \sim \sum_{n=0}^{\infty} a_n(x) (-2t)^{-n},
\]
as \(t \to \infty\) in any proper subsector of the sector \(|\arg t| < \pi/2\).

This result is quite suggestive, because it shows that the Airy functions enter twice in the theory of classical solutions of the P\(_{II}\):

(i) in the formula \([3]\]
\[
u = \frac{d}{dx} \log \text{Ai} \left(2^{1/3} x \right), \quad \alpha = 0.
\]
the one parameter family of classical solutions of P\(_{II}\) for integer values of \(\alpha\) is expressed by Airy functions,

(ii) in formulae \((3), (4)\) the Airy functions generate the entries of determinant formula for the rational solutions.

In this paper we clarify the nature of this phenomenon. First, we reformulate the Hankel determinant formula for generic, namely non-classical, solutions of P\(_{II}\) already found in \([10, 11]\). We next construct generating functions for the entries of our Hankel determinant formula. We then show that the generating functions are related to the asymptotic solution at infinity of the isomonodromic problem introduced by Jimbo and Miwa \([6]\).

This result explains the appearance of the Airy functions in Theorem 1.1. In fact, for rational solutions of P\(_{II}\), the asymptotic solution at infinity of the isomonodromic problem is indeed constructed in terms of Airy functions \([7, 8, 14]\).

We expect that the generic solutions of the so-called Painlevé II hierarchy \([1, 2, 4]\) should be expressed by some Hankel determinant formula. Of course the generating functions for the entries of Hankel determinant formula should be related to the asymptotic solution at infinity of the isomonodromic problem for the Painlevé II hierarchy. We also expect that the similar phenomena can be seen for other Painlevé equations. We shall discuss these generalizations in future publications.

Acknowledgments The authors thank Prof. H. Sakai for informing them of references \([7, 8]\). They also thank Prof. K. Okamoto for discussions and encouragement. M.M. acknowledges the support from the Engineering and Physical Sciences Research Council Fellowship \#GR/S48424/01. K.K. acknowledges the support from the scientist exchange program between Japan Society for the Promotion of Science and Australian Academy of Science \#0301002 and the JSPS Grant-in-Aid for Scientific Research (B) \#15340057.

2 Hankel Determinant Formula and Isomonodromy Problem

2.1 Hankel Determinant Formula

We first prepare the Hankel determinant formula for generic solutions for P\(_{II}\) \((1)\). To show the parameter dependence explicitly, we denote equation \((1)\) as P\(_{II}[\alpha]\). The formula is based on the fact that the \(\tau\) functions for P\(_{II}\) satisfy the Toda equation,
\[
\sigma_n' \sigma_n - (\sigma_n')^2 = \sigma_{n+1} \sigma_{n-1}, \quad n \in \mathbb{Z}, \quad ' = d/dx.
\]
Putting \(\tau_n = \sigma_n/\sigma_0\) so that the \(\tau\) function is normalized as \(\tau_0 = 1\), equation \((5)\) is rewritten as
\[
\tau_n' \tau_n - (\tau_n')^2 = \tau_{n+1} \tau_{n-1} - \psi \sigma_n^2, \quad \tau_{-1} = \psi, \quad \tau_0 = 1, \quad \tau_1 = \varphi, \quad n \in \mathbb{Z}.
\]
Then it is known that \(\tau_n\) can be written in terms of Hankel determinant as follows \([11]\):
Proposition 2.1 Let \(\{a_n\}_{n \in \mathbb{N}}, \{b_n\}_{n \in \mathbb{N}} \) be the sequences defined recursively as
\[
a_n = a_{n-1} + \psi \sum_{i+j=n-2} a_i a_j, \quad b_n = b_{n-1} + \varphi \sum_{i+j=n-2} b_i b_j, \quad a_0 = \varphi, \quad b_0 = \psi.
\]
For any \(N \in \mathbb{Z} \), we define Hankel determinant \(\tau_N \) by
\[
\tau_N = \begin{cases}
\det(a_{i+j})_{i,j \leq N} & N > 0, \\
1 & N = 0, \\
\det(b_{i+j})_{i,j \leq |N|} & N < 0.
\end{cases}
\]
Then \(\tau_N \) satisfies equation (6).

Since the above formula involves two arbitrary functions \(\varphi \) and \(\psi \), it can be regarded as the determinant formula for general solution of the Toda equation. Imposing appropriate conditions on \(\varphi \) and \(\psi \), we obtain determinant formula for the solutions of P\(\Pi \):

Proposition 2.2 Let \(\psi \) and \(\varphi \) be functions in \(x \) satisfying
\[
\frac{\psi''}{\psi} = \frac{\varphi''}{\varphi} = -2\psi \varphi + 2x, \quad (9)
\]
\[
\varphi' \psi - \varphi \psi' = 2\alpha, \quad (10)
\]
Then we have the following:

(i) \(u_0 = (\log \varphi)' \) satisfies P\(\Pi \)[\(\alpha \)].

(ii) \(u_{-1} = -(\log \psi)' \) satisfies P\(\Pi \)[\(\alpha - 1 \)].

(iii) \(u_N = \left(\log \frac{\tau_{N+1}}{\tau_N} \right)' \), where \(\tau_N \) is defined by equation (8), satisfies P\(\Pi \)[\(\alpha + N \)].

Proof. (i) and (ii) can be directly checked by using the relations (9) and (10). Then (iii) is the reformulation of Theorem 4.2 in [10].

2.2 Riccati Equations for Generating Functions

Consider the generating functions for the entries as the following formal series
\[
F_{\infty}(x, t) = \sum_{n=0}^{\infty} a_n(x) t^{-n}, \quad G_{\infty}(x, t) = \sum_{n=0}^{\infty} b_n(x) t^{-n}.
\]
(11)

It follows from the recursion relations (7) that the generating functions formally satisfy the Riccati equations. In fact, multiplying the recursion relations (7) by \(t^{-n} \) and take the summation from \(n = 0 \) to \(\infty \), we have:

Proposition 2.3 The generating functions \(F_{\infty}(x, t) \) and \(G_{\infty}(x, t) \) formally satisfy the Riccati equations
\[
\frac{\partial F}{\partial x} = -\psi F'^2 + t^2 F - t^2 \varphi, \quad (12)
\]
\[
\frac{\partial G}{\partial x} = -\varphi G'^2 + t^2 G - t^2 \psi, \quad (13)
\]
respectively.

Since \(F_{\infty} \) and \(G_{\infty} \) are defined as the formal power series around \(t \sim \infty \), it is convenient to derive the differential equations with respect to \(t \). In order to do this, the following auxiliary recursion relations are useful.

Lemma 2.4 Under the condition (9) and (10), \(a_n \) and \(b_n \) \((n \geq 0) \) satisfy the following recursion relations,
\[
(\psi a_{n+2} - \psi' a_{n+1})' = 2(n+1)\psi a_n, \quad (14)
\]
\[
(\varphi b_{n+2} - \varphi' b_{n+1})' = 2(n+1)\varphi b_n, \quad (15)
\]
respectively.
We omit the details of the proof of Lemma 2.4, because it is proved by straight but tedious induction. Multiplying
equations (14) and (15) by \(t^{-n} \) and taking summation over \(n = 0 \) to \(\infty \), we have the following differential
equations for \(F_\infty \) and \(G_\infty \):

Lemma 2.5 The generating functions \(F_\infty \) and \(G_\infty \) formally satisfy the following differential equations,

\[
2\psi t \frac{\partial F}{\partial t} = t(\psi' - t\psi) \frac{\partial F}{\partial x} + (\psi'' t - \psi' t^2 + 2\psi) F + t^2(\psi\varphi' + \psi' \varphi),
\]

\[
2\varphi t \frac{\partial G}{\partial t} = t(\varphi' - t\varphi) \frac{\partial G}{\partial x} + (\varphi'' t - \varphi' t^2 + 2\varphi) G + t^2(\psi\varphi' + \psi' \varphi),
\]

respectively.

Eliminating \(x \)-derivatives from equations (12), (16), and equations (13), (17), respectively, we obtain the Riccati
equations with respect to \(t \):

Proposition 2.6 The generating functions \(F_\infty \) and \(G_\infty \) formally satisfy the following Riccati equations,

\[
2t \frac{\partial F}{\partial t} = -t(\psi' - t\psi) F^2 + \left(\frac{\psi''}{\psi^2} t + 2 - t^3 \right) F + t^2(\psi' + t\varphi),
\]

\[
2t \frac{\partial G}{\partial t} = -t(\varphi' - t\varphi) G^2 + \left(\frac{\varphi''}{\varphi^2} t + 2 - t^3 \right) G + t^2(\psi' + t\varphi),
\]

respectively.

2.3 Isomonodromic Problem

The Riccati equations for \(F_\infty \) equations (12) and (18) are linearized by standard technique, which yield isomono-
dromic problem for \(P_{11} \). It is easy to derive the following theorem from the Proposition 2.3 and 2.6:

Theorem 2.7

(i) It is possible to introduce the functions \(Y_1(x, t) \), \(Y_2(x, t) \) consistently as

\[
F_\infty(x, t) = t \frac{\psi}{Y_1} \left(\frac{1}{Y_1} \frac{\partial Y_1}{\partial x} + \frac{t}{2} \right) = \frac{2t}{\psi' - t\psi} \left[\frac{1}{Y_1} \frac{\partial Y_1}{\partial t} + \frac{1}{4} \left(\frac{\psi''}{\psi} - t^2 \right) \right],
\]

\[
Y_2 = \frac{1}{\psi} \left(\frac{1}{Y_1} \frac{\partial Y_1}{\partial x} + \frac{t}{2} \right).
\]

Then \(Y_1 \) and \(Y_2 \) satisfy the following linear system for \(Y = \left(\begin{array}{c} Y_1 \\ Y_2 \end{array} \right) \):

\[
\frac{\partial}{\partial t} Y = AY, \quad A = \begin{pmatrix}
\frac{t^2}{4} - \frac{z}{2} - \frac{x}{2} & -\frac{t\psi}{2} (t + u_{-1}) \\
\frac{1}{\psi} \left((u_{-1} - t) \frac{z}{2} + \alpha \right) & -\frac{t^2}{4} + \frac{z}{2} + \frac{x}{2}
\end{pmatrix},
\]

\[
\frac{\partial}{\partial x} Y = BY, \quad B = \begin{pmatrix}
\frac{t}{2} \\
\frac{z}{t}
\end{pmatrix},
\]

where \(z = -\psi\varphi \).

(ii) Similarly, it is possible to introduce the functions \(Z_1(x, t) \), \(Z_2(x, t) \) consistently as

\[
G_\infty(x, t) = \frac{t}{\varphi} \left(\frac{1}{Z_1} \frac{\partial Z_1}{\partial x} + \frac{t}{2} \right) = \frac{2t}{\varphi' - t\varphi} \left[\frac{1}{Z_1} \frac{\partial Z_1}{\partial t} + \frac{1}{4} \left(\frac{\varphi''}{\varphi} - t^2 \right) \right],
\]

\[
Z_2 = \frac{1}{\varphi} \left(\frac{1}{Z_1} \frac{\partial Z_1}{\partial x} + \frac{t}{2} \right).
\]
Then Z_1 and Z_2 satisfy the following linear system for $Z = \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix}$:

\[
\frac{\partial}{\partial t} Z = CZ, \quad C = \begin{pmatrix} \frac{t^2}{4} - \frac{z}{2} - \frac{x}{2} & -\frac{\varphi}{2}(t - u_0) \\ -\frac{1}{\varphi} \left((u_0 + t) \frac{z}{2} + \alpha \right) & -\frac{t^2}{4} + \frac{z}{2} + \frac{x}{2} \end{pmatrix},
\]

\[
\frac{\partial}{\partial x} Z = DY, \quad D = \begin{pmatrix} -\frac{t}{2} & \frac{\varphi}{2} \\ -\frac{z}{2} & \frac{t}{2} \end{pmatrix}.
\]

(26)

(27)

Remark 2.8 The linear systems (22), (23) and (26), (27) are the isomonodromic problems for $P_{II}[\alpha - 1]$ and $P_{II}[\alpha]$, respectively [6]. For example, compatibility condition for equations (22) and (23), namely,

\[
\frac{\partial A}{\partial x} - \frac{\partial B}{\partial t} + [A, B] = 0,
\]

gives

\[
\begin{cases}
\frac{dz}{dx} = -2u_{-1}z - 2\alpha, \\
\frac{du_{-1}}{dx} = u_{-1}^2 - 2z - 2x, \\
u_{-1} = -\frac{1}{\psi} \frac{d\psi}{dx},
\end{cases}
\]

which yields $P_{II}[\alpha - 1]$ for u_{-1}. This fact also guarantees the consistency of two expressions for F_∞ in terms of Y_1 in equation (20). Similar remark holds true for G_∞ and Z_1.

Remark 2.9 F_∞ and G_∞ are also expressed as,

\[
F_\infty = t \frac{Y_2}{Y_1}, \quad G_\infty = t \frac{Z_2}{Z_1},
\]

(29)

respectively. Conversely, it is obvious that for any solution Y_1 and Y_2 for the linear system (22) and (23), $F = tY_2/Y_1$ satisfies the Riccati equations (12) and (18) (Similar for G).

Remark 2.10 Theorem 1.1 is recovered by putting $\psi = 1, \varphi = x$.

Remark 2.11 Y_1 can be formally expressed in terms of a_n by using equation (20) as

\[
Y_1 = \text{const.} \times \exp \left(\frac{1}{12} \alpha^3 - \frac{x}{2} t \right) t^{-\alpha} \exp \left[\frac{1}{2} \sum_{n=1}^\infty \psi a_{n+1} - \psi' a_n - \frac{t}{n} \right].
\]

(30)

which coincides with known asymptotic behavior of Y_1 around $t \sim \infty$ [6].

3 Solutions of Isomonodromic Problems and Determinant Formula

In the previous section we have shown that the generating functions F_∞ and G_∞ formally satisfy the Riccati equations (12,18) and (13,19), and that their linearization yield isomonodromic problems (22, 23) and (26,27) for P_{II}. Now let us consider the converse. We start from the linear system (22) and (23). We have two linearly independent solutions around $t \sim \infty$, one of which is related with $F_\infty(x,t)$. Then, what is another solution? In fact, it is well-known that linear system (22) and (23) admit the formal solutions around $t \sim \infty$ of the form [6],

\[
Y_1^{(1)} = \begin{pmatrix} Y_1^{(1)} \\ Y_2^{(1)} \end{pmatrix} = \exp \left(\frac{t^3}{12} - \frac{xt}{2} \right) t^{-\alpha} \exp \left[\frac{1}{2} \sum_{n=1}^\infty \psi a_{n+1} - \psi' a_n - \frac{t}{n} \right],
\]

\[
Y_2^{(1)} = \begin{pmatrix} y_1^{(1)} \\ y_2^{(1)} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} t^{-1} + \begin{pmatrix} y_1^{(2)} \\ y_2^{(2)} \end{pmatrix} t^{-2} + \cdots,
\]

(31)

\[
Y_1^{(2)} = \begin{pmatrix} Y_1^{(2)} \\ Y_2^{(2)} \end{pmatrix} = \exp \left(-\frac{t^3}{12} + \frac{xt}{2} \right) t^{\alpha} \exp \left[\frac{1}{2} \sum_{n=1}^\infty \psi a_{n+1} - \psi' a_n - \frac{t}{n} \right],
\]

\[
Y_2^{(2)} = \begin{pmatrix} y_1^{(2)} \\ y_2^{(2)} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} t^{-1} + \begin{pmatrix} y_1^{(2)} \\ y_2^{(2)} \end{pmatrix} t^{-2} + \cdots.
\]

(32)
From Remark 2.9 we see that there are two possible power-series solutions for the Riccati equation (18) of the form,

\[Y^{(1)} \rightarrow F^{(1)} = t \sum_{n=0}^{\infty} c_n t^{-n}, \quad Y^{(2)} \rightarrow F^{(2)} = t^2 \sum_{n=0}^{\infty} d_n t^{-n}. \]

Proposition 3.1 The Riccati equation (18) admits only the following two kinds of power-series solutions around \(t \sim \infty \):

\[F^{(1)} = \sum_{n=0}^{\infty} c_n t^{-n}, \quad F^{(2)} = t^2 \sum_{n=0}^{\infty} d_n t^{-n}. \]

Proof. We substitute the expression,

\[F = t^\rho \sum_{n=0}^{\infty} c_n t^{-n}, \]

for some integer \(\rho \) to be determined, into the Riccati equation (18). We have:

\[
\sum_{n=0}^{\infty} 2(\rho - n) c_n t^{\rho+1-n} = \sum_{n=0}^{\infty} \psi' \left(\sum_{k=0}^{n} c_k c_{n-k} \right) t^{2\rho-2n} - \sum_{n=0}^{\infty} \psi \left(\sum_{k=0}^{n} c_k c_{n-k} \right) t^{2\rho+1-2n} \\
+ \sum_{n=0}^{\infty} \left(\frac{\psi''}{\psi} + 2 \right) c_n t^{\rho-n} - \sum_{n=0}^{\infty} c_n t^{\rho+3-n} + t^2 (\varphi' + t\varphi)
\]

The leading order should be one of \(t^{2\rho+1}, t^{\rho+3} \) and \(t^3 \). Investigating the balance of these terms, we have \(\rho = 0 \) or \(\rho = 2 \).

We also have the similar result for the solution of the Riccati equation (19):

Proposition 3.2 The Riccati equation (19) admits only the following two kinds of power-series solutions around \(t \sim \infty \):

\[G^{(1)} = \sum_{n=0}^{\infty} e_n t^{-n}, \quad G^{(2)} = t^2 \sum_{n=0}^{\infty} f_n t^{-n}. \]

It is obvious that \(F^{(1)} \) and \(G^{(1)} \) are nothing but our generating functions \(F_{\infty} \) and \(G_{\infty} \), respectively. Then, what are \(F^{(2)} \) and \(G^{(2)} \)? In the following, we present two observations regarding this point. First, there are unexpectedly simple relations among those functions:

Proposition 3.3 The following relations hold.

\[F^{(2)}(x, t) = \frac{t^2}{G^{(1)}(x, -t)}, \quad G^{(2)}(x, t) = \frac{t^2}{F^{(1)}(x, -t)}. \]

Proof. Substitute \(F(x, t) = \frac{t^2}{G^{(1)}(x, -t)} \) into equation (18). This gives equation (19) for \(G(x, t) = g(x, -t) \) by using the relation (9). Choosing \(g(x, t) = G^{(1)}(x, t) \), \(F(x, t) \) must be \(F^{(2)}(x, t) \), since its leading order is \(t^2 \). We obtain the second equation by the similar argument.

Second, \(F^{(2)}(x, t) \) and \(G^{(2)}(x, t) \) are also interpreted as generating functions of entries of Hankel determinant formula for \(P_{11} \). Recall that the determinant formula in Proposition 2.1 is for the \(\tau \) sequence \(\tau_n = \sigma_n / \sigma_0 \) so that it is normalized as \(\tau_0 = 1 \). We show that \(F^{(2)}(x, t) \) and \(G^{(2)}(x, t) \) correspond to different normalizations of \(\tau \) sequence:
Proposition 3.4 Let

\[
F^{(2)}(x,t) = -\frac{t^2}{\psi'^2} \sum_{n=0}^{\infty} d_n (-t)^{-n}, \quad (39)
\]

\[
G^{(2)}(x,t) = -\frac{t^2}{\varphi'^2} \sum_{n=0}^{\infty} f_n (-t)^{-n}, \quad (40)
\]

be formal solutions of the Riccati equations (12),(18) and (13), (19), respectively. We put

\[
\kappa_{n-1} = \det(d_{i+j})_{i,j=1,...,n} \quad (n > 0), \quad \kappa_{-1} = 1, \quad (41)
\]

\[
\theta_{n+1} = \det(f_{i+j})_{i,j=1,...,n} \quad (n > 0), \quad \theta_1 = 1. \quad (42)
\]

Then \(\kappa_n\) and \(\theta_n\) are related to \(\tau_n\) as

\[
\kappa_n = \frac{\tau_n}{\psi} = \frac{\tau_{n-1}}{\tau_1} \quad (n < 0), \quad (43)
\]

\[
\theta_n = \frac{\tau_n}{\varphi} = \frac{\tau_{n+1}}{\tau_1} \quad (n > 0). \quad (44)
\]

To prove Proposition 3.4, we first derive recurrence relations that characterize \(d_n\) and \(f_n\). By substituting equations (39) and (40) into the Riccati equations (12) and (13), respectively, we easily obtain the following lemma:

Lemma 3.5 (i) \(d_0\) and \(d_1\) are given by \(d_0 = -\psi\) and \(d_1 = \psi'\), respectively. For \(n \geq 2\), \(d_n\) are characterized by the recursion relation,

\[
d_n = d_{n-1}' - \frac{n-2}{\psi} \sum_{k=2}^{n-2} d_k d_{n-k}, \quad d_2 = \frac{\psi'' \psi - (\psi')^2 + \varphi \psi^3}{\psi}. \quad (45)
\]

(ii) \(f_0\) and \(f_1\) are given by \(f_0 = -\varphi\) and \(f_1 = \varphi'\), respectively. For \(n \geq 2\), \(f_n\) are characterized by the recursion relation,

\[
f_n = f_{n-1}' - \frac{1}{\varphi} \sum_{k=2}^{n-2} f_k f_{n-k}, \quad f_2 = \frac{\varphi'' \varphi - (\varphi')^2 + \varphi^3 \psi}{\varphi}. \quad (46)
\]

Proof of Proposition 3.4. Consider the Toda equations (5) and (6). Let us put

\[
\tilde{\tau}_n = \frac{\sigma_n}{\sigma_{n+1}} = \frac{\tau_n}{\tau_{n+1}}, \quad (47)
\]

so that \(\tilde{\tau}_{-1} = 1\). Then it is easy to derive the Toda equation for \(\tilde{\tau}_n\):

\[
\tilde{\tau}_n'' \tilde{\tau}_n - (\tilde{\tau}_n')^2 = \tilde{\tau}_{n+1} \tilde{\tau}_{n-1} - \frac{\psi'' \psi - (\psi')^2 + \varphi \psi^3}{\psi^2} \tilde{\tau}_n^2, \quad (48)
\]

\[
\tilde{\tau}_{-2} = \psi'' \psi - (\psi')^2 + \varphi \psi^3, \quad \tilde{\tau}_{-1} = 1, \quad \tilde{\tau}_0 = \frac{1}{\psi}. \quad (49)
\]

We have the determinant formula for \(\tilde{\tau}_n\) as,

\[
\tilde{\tau}_n = \begin{cases}
\det(\tilde{a}_{i+j})_{i,j \leq n+1} & n > 0, \\
1, & n = 0, \\
\det(\tilde{b}_{i+j})_{i,j \leq |n|-1} & n < 0,
\end{cases} \quad (50)
\]

\[
\tilde{a}_n = \tilde{a}_{n-1}' - \frac{\psi'' \psi - (\psi')^2 + \varphi \psi^3}{\psi} \sum_{i+j \geq 0} \tilde{a}_i \tilde{a}_j, \quad \tilde{a}_0 = \frac{1}{\psi}, \quad (51)
\]

\[
\tilde{b}_n = \tilde{b}_{n-1}' + \frac{1}{\psi} \sum_{i+j \geq 0} \tilde{b}_i \tilde{b}_j, \quad \tilde{b}_0 = \frac{\psi'' \psi - (\psi')^2 + \varphi \psi^3}{\psi}. \quad (52)
\]
Now it is obvious from Lemma 3.5 that
\[d_j = \tilde{b}_{j-2} \quad (j \geq 2), \quad \kappa_n = \tilde{\tau}_n \quad (n < 0), \]
which proves equation (41). Equation (42) can be proved in a similar manner.

We finally remark that the mysterious relations among the \(\tau \) functions and the solutions of isomonodromic problem in Proposition 3.3 and 3.4 should eventually originate from the symmetry of \(P_II \), but their meaning is not sufficiently understood yet.

References

MHF2003-1 Mitsuhiro T. NAKAO, Kouji HASHIMOTO & Yoshitaka WATANABE
A numerical method to verify the invertibility of linear elliptic operators with applications to nonlinear problems

MHF2003-2 Masahisa TABATA & Daisuke TAGAMI
Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients

MHF2003-3 Tomohiro ANDO, Sadanori KONISHI & Seiya IMOTO
Adaptive learning machines for nonlinear classification and Bayesian information criteria

MHF2003-4 Kazuhiro YOKOYAMA
On systems of algebraic equations with parametric exponents

MHF2003-5 Masao ISHIKAWA & Masato WAKAYAMA
Applications of Minor Summation Formulas III, Plücker relations, Lattice paths and Pfaffian identities

MHF2003-6 Atsushi SUZUKI & Masahisa TABATA
Finite element matrices in congruent subdomains and their effective use for large-scale computations

MHF2003-7 Setsuo TANIGUCHI
Stochastic oscillatory integrals - asymptotic and exact expressions for quadratic phase functions -

MHF2003-8 Shoki MIYAMOTO & Atsushi YOSHIKAWA
Computable sequences in the Sobolev spaces

MHF2003-9 Toru FUJII & Takashi YANAGAWA
Wavelet based estimate for non-linear and non-stationary auto-regressive model

MHF2003-10 Atsushi YOSHIKAWA
Maple and wave-front tracking — an experiment

MHF2003-11 Masanobu KANEKO
On the local factor of the zeta function of quadratic orders

MHF2003-12 Hidefumi KAWASAKI
Conjugate-set game for a nonlinear programming problem
MHF2004-1 Koji YONEMOTO & Takashi YANAGAWA
Estimating the Lyapunov exponent from chaotic time series with dynamic noise

MHF2004-2 Rui YAMAGUCHI, Eiko TSUCHIYA & Tomoyuki HIGUCHI
State space modeling approach to decompose daily sales of a restaurant into time-dependent multi-factors

MHF2004-3 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA & Yasuhiko YAMADA
Cubic pencils and Painlevé Hamiltonians

MHF2004-4 Atsushi KAWAGUCHI, Koji YONEMOTO & Takashi YANAGAWA
Estimating the correlation dimension from a chaotic system with dynamic noise

MHF2004-5 Atsushi KAWAGUCHI, Kentarou KITAMURA, Koji YONEMOTO, Takashi YANAGAWA & Kiyofumi YUMOTO
Detection of auroral breakups using the correlation dimension

MHF2004-6 Ryo IKOTA, Masayasu MIMURA & Tatsuyuki NAKAKI
A methodology for numerical simulations to a singular limit

MHF2004-7 Ryo IKOTA & Eiji YANAGIDA
Stability of stationary interfaces of binary-tree type

MHF2004-8 Yuko ARAKI, Sadanori KONISHI & Seiya IMOTO
Functional discriminant analysis for gene expression data via radial basis expansion

MHF2004-9 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA & Yasuhiko YAMADA
Hypergeometric solutions to the $q \mathcal{P}$ Painlevé equations

MHF2004-10 Raimundas VIDŪNAS
Expressions for values of the gamma function

MHF2004-11 Raimundas VIDŪNAS
Transformations of Gauss hypergeometric functions

MHF2004-12 Koji NAKAGAWA & Masakazu SUZUKI
Mathematical knowledge browser

MHF2004-13 Ken-ichi MARUNO, Wen-Xiu MA & Masayuki OIKAWA
Generalized Casorati determinant and Positon-Negaton-Type solutions of the Toda lattice equation

MHF2004-14 Nalini JOSHI, Kenji KAJIWARA & Marta MAZZOCCO
Generating function associated with the determinant formula for the solutions of the Painlevé II equation