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Abstract

We consider the curvature-driven motion of an interface on a bounded
domain that contacts with the boundary at the right angle and has triple
junctions with prescribed angles. We derive a linearized system at a sta-
tionary interface, and obtain a characteristic function whose zeros corre-
spond to the eigenvalues of the linearized operator. From the characteristic
function, it is shown that the unstable dimension is not relevant to the
topology of the stationary interface but depends mainly on the curvature
of the boundary.
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1 Introduction

In various nonlinear phenomena such as annealing pure metal (Mullins [12]) and

segregation between biological species (Ei et al. [4]), we can observe that the

medium is separated into subregions by interfaces with triple junctions. In some

situation, these interfaces evolve in time depending on their curvatures with pre-

scribed angles at triple junctions.

In this paper, we consider the curvature-driven motion of curves in a two-

dimensional bounded domain under the situation where the curves form a network

with triple junctions. Our purpose is to study an eigenvalue problem derived

by formal linearization of a model equation around stationary interfaces of the

motion. Though a part of the results also holds for more general networks, we

restrict ourselves to networks that are topologically equivalent to binary trees

(see Figure 1). Here by binary trees, we mean connected graphs without any

cycles in which every vertex has either one edge or three edges (see [1] for the

terminologies ).

===================================

Figure 1

===================================

This situation can be formulated mathematically as follows. Let Ω be a

bounded domain in R
2 with smooth boundary ∂Ω, and consider a network of

curves with triple junctions in Ω. We assume that the network Γ = Γ(t) consists

of n curves denoted by γi = γi(t), i = 1, 2, . . . , n, and contacts with ∂Ω at end-

points (see Figure 1). We often regard Γ as the set of the curves {γi}, and denote

by B the subset of Γ that consists of curves touching ∂Ω. We denote by V = {xl}
the set of triple junctions. Each curve γi is driven to the center of curvature at

the normal speed Vi that is equal to the curvature of γi at each point. At each

triple junction xl, three curves meet with prescribed angles, and each γi ∈ B

contacts with ∂Ω at the right angle.

At first we express every curve γi(t) by using a position vector pi(s, t), where

s is an arclength parameter measured from one end of γi. Later we will use

another expression. Assuming that pi is sufficiently smooth, the motion of Γ(t)

is described as follows:
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(M1) The normal velocity Vi = ∂pi

∂t
· Ni satisfies Vi = κi, where Ni is the unit

normal vector to γi pointing the left of the unit tangent vector ∂pi

∂s
, and κi

represents the signed curvature of γi given by κi = ∂2pi

∂s2 ·Ni.

(M2) If three curves γi, γj , γk meet at a triple junction xl(t), then the contact

angles among them satisfy Young’s law, that is, for some positive constants

σi, σj and σk, it holds

sin θl,i

σi

=
sin θl,j

σj

=
sin θl,k

σk

, (0 < θl,i, θl,j, θl,k < π, θl,i + θl,j + θl,k = 2π)

where θl,i is the contact angle between γj and γk, and so on.

(M3) If γi(t) contacts with ∂Ω, then the tangent vectors of γi(t) and ∂Ω at the

point of contact are orthogonal to each other.

We note that each curve of a stationary interface is a line segment. Although

it is not clear whether or not there exists a stationary interface for a given domain,

we can always construct a domain that admits the existence of a given set of line

segments satisfying Young’s law as a stationary interface. In this paper, assuming

the existence of stationary interfaces, we study their linearized stability. Suppose

that perturbations to a stationary interface are represented as graphs on the

line segments of the stationary interface. Then we obtain a system of linear

elliptic equations by formal linearization in the same manner as in our preceding

paper [10]. We denote by L the resulting linear operator, and by NU the number

of positive eigenvalues of L. Our goal is to determine the unstable dimension NU.

(More precise description of L and NU will be given in the next section.)

The unstable dimension can be interpreted as follows from a variational view-

point. Let Li(t) denote the length of γi, and define an energy functional by

E[Γ] :=
∑
γi∈Γ

σiLi.

Then the energy E[Γ(t)] is decreasing in t, because

d

dt
E[Γ(t)] = −

∑
γi∈Γ

σi

∫ Li

0

Viκids = −
∑
γi∈Γ

σi

∫ Li

0

κ2
i ds ≤ 0.

In particular, this implies that any stationary interface corresponds to a critical

point of this energy functional. The second variation of E[Γ] at a stationary

interface is associated with the linearized operator L, and the unstable dimension

NU corresponds to the Morse index.

In order to determine the unstable dimension NU, we encounter the following

difficulties:
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(i) Direct computations are extremely complicated. In fact, the computation

is complicated enough even for a stationary interface with only one triple

junction (see [10]).

(ii) There are infinitely many kinds of topologically different networks. Moreover,

there are topologically different networks with the same number of triple

junctions (see Figure 2).

Thus, in a general setting, we need a systematic approach to determine NU .

Specifically, in order to overcome the above difficulties, we will construct charac-

teristic functions for eigenvalues inductively and combine them with variational

methods.

=========================================

Figure 2

=========================================

Now we are in a position to state our main result.

Theorem 1.1. Let Γ = {γi} be a stationary interface that is homeomorphic to

a binary tree. Define a characteristic index D by

D =
∑
γi∈Γ

σiLi ×
∏
γi∈B

hi +
∑
γi∈B

{
σi

∏
γj∈B\{γi}

hj

}
,

where hi denotes the curvature of ∂Ω at the point of contact with γi ∈ B. (Note

that hi is taken to be nonpositive if Ω is convex.)

(i) The unstable dimension NU is given by

NU =




m− 1 for (−1)mD ≤ 0,

m for (−1)mD > 0,

where m = #{hi < 0}.

(ii) The stationary interface is degenerate (i.e., there exists a zero eigenvalue) if

and only if D = 0.
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We say that a stationary interface is linearly stable if there is no nonnegative

eigenvalue, and is linearly unstable if there is at least one positive eigenvalue. As

a direct consequence of Theorem 1.1, we have the following result.

Corollary 1.1.

(i) If all of hi are positive, then any stationary interface is linearly stable.

(ii) If at least two of hi are negative, then any stationary interface is linearly

unstable.

Here are some remarks about this result. First, for an interface with one triple

junction, the characteristic index is given by

D = (σ1L1 + σ2L2 + σ3L3)h1h2h3 + (σ1h2h3 + σ2h1h3 + σ3h1h2),(1)

which was obtained in our previous paper [10]. For an interface with two triple

junctions as in Figure 3, the curve γ3 does not contact with the boundary. In

this case, the characteristic index is written as

D = (σ1L1 + σ2L2 + σ3L3 + σ4L4 + σ5L5)h1h2h4h5

+(σ1h2h4h5 + σ2h1h4h5 + σ4h1h2h5 + σ5h1h2h4).

Thus, D is symmetric with respect to γ1, γ2, γ4, γ5, but γ3 is different from others.

For an interface with four triple junctions, there are two possible configurations

that are topologically different (see Figure 2). It is interesting to note that the

characteristic indices for these two interfaces are the same. In fact, the char-

acteristic index which we will construct later is independent of such topological

difference.

=========================================

Figure 3

=========================================

This paper is organized as follows. In Section 2, we formulate the linearized

operator. The procedure is similar to that in our former study [10]. Section 3

introduces a variational formulation for eigenvalues. Section 4 deals with charac-

teristic indices. In Section 5 we give a proof of Theorem 1.1.

In the following sections, Γ is supposed to be a stationary interface that is

topologically equivalent to a binary tree.
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2 Linearization

In this section we derive a system of linearized equations that approximates

the motion of interfaces near a stationary interface. We consider perturbations

that can be represented as graphs of functions on Γ, and describe the motion

of nearby interfaces by using some nonlinear partial differential equations with

moving boundaries.

Suppose that γi, γj, γk meet at a triple junction xl ∈ V . We take xl as the

origin of ξ-η coordinate system. For γi, the ξ-axis is taken along γi, and the η-axis

is taken by rotating the ξ-axis by π/2 radian counter-clockwise. In this coordinate

system we consider a perturbation which can be represented as a graph of η =

wi(ξ). The function wi is defined on some interval of ξ with moving boundaries.

Approximating the time evolution of wi, we obtain a linear operator L at γi.

Notice that the resulting equation is defined on the fixed domain [0, Li]. We take

coordinate systems for γj and γk in the same way, and describe perturbations

by using some functions wj(t, ξ) and wk(t, ξ). The boundary conditions and

matching conditions on the interface can be transformed into boundary conditions

on wi(t, ξ), wj(t, ξ) and wk(t, ξ). For details of this procedure, we refer to our

previous paper [10].

For γi ∈ B we chose a coordinate system in which ξ = Li corresponds to

the point of contact with ∂Ω. As for γi ∈ Γ \ B, both endpoints are triple

junctions. Hence there are two ways of introducing the coordinate system on γi.

We will choose one of these coordinate systems according to situations in order

to make the presentation simple. We remark that if we take the other end of γi

as the origin, we will obtain the function η = w̃i(ξ) = −wi(Li − ξ) for the same

perturbation.

Now let us describe the linear operator L more concretely. Put u = (u1, u2, . . . , un),

where ui is defined on γi. Then L is written as

L[u] =
∂2u

∂ξ2
.(2)

The associated boundary conditions are given as follows.

1. For γi ∈ B,

∂ui

∂ξ
(Li) + hiui(Li) = 0.(3)
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2. If γi, γj , γk meet at xl ∈ V ,

σiui(0) + σjuj(0) + σkuk(0) = 0,(4)

∂ui

∂ξ
(0) =

∂uj

∂ξ
(0) =

∂uk

∂ξ
(0).(5)

We set

H :=
⊕
γi∈Γ

L2(0, Li),

and treat L as an operator from H to H with a domain of definition

D(L) =
{

u ∈
⊕
γi∈Γ

H2(0, Li) | u satisfies conditions (3)–(5)
}
.

The inner product (·, ·)� of H is given by

(u,v)H :=
∑
γi∈Γ

{
σi

∫ Li

0

uividξ

}
.

3 Variational Methods

The operator L introduced in Section 2 naturally leads to a bilinear form.

Definition 3.1. A bilinear form J : V × V → R is defined by

J(u, v) :=
∑
γi∈B

hiui(Li)vi(Li) +
∑
γi∈Γ

σi

∫ Li

0

∂ξui(ξ)∂ξvi(ξ)dξ,

where

V := {u ∈
⊕
γi∈Γ

H1(0, Li) | u satisfies the condition (4)}.

The inner product (·, ·)� is given by

(u, v)V :=
∑
γi∈Γ

{
σi

∫ Li

0

(uivi + ∂ξui ∂ξvi)dξ

}
.

In addition we introduce a functional I : V \ {0} → R defined by

I(u) :=
J(u,u)

(u,u)H
.

We can characterize the eigenvalues of L in terms of I. Here we describe some

useful properties of L, J and I. Discussions similar to [10] yield the following

result:
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Proposition 3.1. There exist positive numbers c and d such that

‖u‖2
V ≤ c(u,u)H + dJ(u,u) for all u ∈ V .

From this we deduce that the operator L is self-adjoint.

Let H be the family of all finite dimensional subspaces of H . Denote by

λj the jth eigenvalue of L. Then we have λj ≥ λj+1. The eigenvalues λj are

characterized by the sup-inf principle:

−λj = sup
K∈�

dimK≤j−1

inf
v∈K⊥\{0}

I(v),(6)

where

K⊥ := {u ∈ V | (u,v)H = 0 for all v ∈ K}.
For the proof, see Section 1, Chapter 13 of [13].

If we take {hi} as parameters, each eigenvalue is a continuous and monotone

decreasing function of hi. See Theorems 6 and 9 in Chapter 6 of [3].

Proposition 3.2. Put m = #{hi < 0 | γi ∈ B}. Then NU ≥ m− 1

Proof. We can assume B = {γ1, γ2, . . . , γk} by renumbering the elements of Γ

if necessary. Suppose that h1, h2, . . . , hm (m ≥ 2) are negative. Since Γ is

of binary-tree type, for each i = 1, 2, . . . , m − 1, there is a unique path on Γ

which connects γi and γm. More precisely, for each i = 1, 2, . . . , m− 1, there is a

unique subset, say Γi, of Γ such that Γi is homeomorphic to a line segment and

γi, γm ∈ Γi. Then we can choose a function ϕi on Γi such that

(i) ϕi is constant and nonzero on each γi,

(ii) ϕi is equal to zero on Γ \ Γi, and

(iii) ϕi satisfies (4).

Now, for any v ∈M := Span[ϕ1, ϕ2, . . . , ϕm−1], we have I(v) < 0. Moreover,

sup
v∈M
v �=0

I(v) = sup
‖v‖�=1

v∈M

I(v) < 0,

because {v ∈M | ‖v‖� = 1} is compact.

When m ≥ 3, for any ψ1, ψ2, . . . , ψm−2 ∈ H , we can choose ϕ ∈ M , ϕ �= 0

such that (ϕ, ψi)� = 0 (i = 1, 2, . . . , m−2). Therefore from the sup-inf principle,

we obtain λm−1 > 0. The case m = 2 is similar and the case m = 1 is trivial.

Remark 3.1. Proposition 3.2 holds also for stationary interfaces that are not

necessarily of binary-tree type. The proof is the same except that the path con-

necting γi and γm may not be unique.
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4 Characteristic Functions

In this section we define a characteristic function whose zeros correspond to the

eigenvalues of L. When Γ has only one triple junction, such a characteristic

function was obtained in Section 4 of [10]. We first sketch the outline briefly.

Let Γ be a stationary interface which consists of three line segments γi, i =

1, 2, 3. We denote the eigenfunctions of L associated with an eigenvalue λ = µ2 �=
0 by (U1(ξ), U2(ξ), U3(ξ)). Then, by (2), we have

d2

dξ2
Ui(ξ) = µ2Ui(ξ), 0 < ξ < Li (i = 1, 2, 3)

and hence we can express Ui(ξ) as

Ui(ξ) = ai sinh(µξ) + bi cosh(µξ) (i = 1, 2, 3)

with some constants ai, bi. By (3)∼(5), we have




aiϕ(µ; hi, Li) + biψ(µ; hi, Li) = 0 (i = 1, 2, 3),

a1 = a2 = a3,

σ1b1 + σ2b2 + σ3b3 = 0,

(7)

where ϕ and ψ are defined by

ϕ(µ; h, L) := h sinh(µL) + µ cosh(µL),

ψ(µ; h, L) := h cosh(µL) + µ sinh(µL).

We regard (7) as a system of linear homogeneous equations for unknowns ai, bi

(i = 1, 2, 3). Then the determinant of the coefficient matrix is computed as

F (µ) = σ1ϕ(µ; h1, L1)ψ(µ; h2, L2)ψ(µ; h3, L3)

+σ2ψ(µ; h1, L1)ϕ(µ; h2, L2)ψ(µ; h3, L3)

+σ3ψ(µ; h1, L1)ψ(µ; h2, L2)ϕ(µ; h3, L3),

(8)

and the system of linear equations has a nontrivial solution (and hence λ = µ2 is

a non-zero eigenvalue of L) if and only if F (µ) = 0. Thus, F (µ) with λ = µ2 is a

characteristic function for the stationary interface with one triple junction.

For a stationary interface with two or more triple junctions, it is extremely

complicated to compute a characteristic function directly in the same way as

in the case of one triple junction. Our idea to overcome this difficulty is to
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decompose the stationary interface into two stationary interfaces with less triple

junctions, and define a characteristic function inductively.

Let Γ be a stationary interface with two or more triple junctions. We divide

the interface Γ into two parts Γα and Γβ by considering a virtual boundary which

separates the domain into two subdomains (see Figure 4). More precisely, we

first choose γk ∈ Γ \B arbitrarily. Since each eigenfunction is analytic on γk ∈ Γ

and has at most finite number of zeros on γk, we can take a point ξ = ξ0 such

that any eigenfunction does not vanish at ξ = ξ0. We divide the domain Ω by a

smooth curve C which intersects γk orthogonally at ξ = ξ0 and does not intersect

the other γi (�= γk). By this, we assume that γk is divided into two parts γα
k

(0 < ξ < ξ0) and γβ
k (ξ0 < ξ < Lk). We regard Γα and Γβ as stationary interfaces

on the domains Ωα and Ωβ , respectively. If the curvature of C at the point of

contact with Γα is +h, then the curvature of C at the point of contact with Γβ

is given by −h.

===================================

Figure 4

===================================

Assuming that characteristic functions, say F α and F β, are obtained for Γα

and Γβ, respectively, we define a characteristic function F for Γ by using F α and

F β.

Proposition 4.1. For any stationary interface Γ, there exists a complex-valued

characteristic function F = F (µ) of a complex variable µ with parameters σi, Li,

(γi ∈ Γ) and hi (γi ∈ B) satisfying the following properties:

(i) For µ �= 0, F (µ) = 0 if and only if λ = µ2 is an eigenvalue of L.

(ii) F (µ) is analytic in µ, σi, Li, and hi. Further, F (µ) is real-valued if µ is

restricted to real numbers.

(iii) F (µ) is odd with respect to µ. In particular, F (0) = 0 for any σi, Li, hi.

(iv) Any zero of F (µ) lies on the real axis or imaginary axis, and it depends on

σi, Li, hi continuously.

(v) F (µ) → +∞ as µ→ +∞.
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(vi) For each γi ∈ B, F is written as F = P (µ)hi + Q(µ), where P and Q are

independent of hi.

Proof. We prove this by induction. First, if Γ has only one triple junction, the

assertion follows immediately from the explicit formula (8).

Next, let Γ be a stationary interface with two or more triple junctions. We

divide Γ into two parts Γα and Γβ as above by introducing a virtual boundary

C which intersects γk orthogonally. Suppose that the assertion is true for Γα

and Γβ, and denote by F α and F β the characteristic functions for Γα and Γβ,

respectively, satisfying the properties (i)∼(vi). By (vi), we can write them as

F α(µ) = P α(µ)h+Qα(µ),

F β(µ) = −P β(µ)h+Qβ(µ),
(9)

where P α, Qα, P β, Qβ are independent of h. From F α(µ) = 0 and F β(µ) = 0, we

can eliminate h to define a function F α+β(µ) by

F α+β(µ) :=
P α(µ)Qβ(µ) +Qα(µ)P β(µ)

σkµ
for µ �= 0(10)

and F α+β(0) = 0.

We will show that this function satisfies the desired properties. First, let

λ0 = µ2
0 (�= 0) be any nonzero eigenvalue of L and denote the corresponding

eigenfunction by (Ui)γi∈Γ. Setting h = −∂ξUi(ξ0)/Ui(ξ0), we can regard (Ui)γi∈Γα

and (Ui)γi∈Γβ as eigenfunctions for Γα and Γβ, respectively, associated with the

eigenvalue λ0. We note that λ0 is a real number and that µ0 is a real or purely

imaginary number such that




P α(µ0)h +Qα(µ0) = 0,

−P β(µ0)h+Qβ(µ0) = 0.
(11)

Hence, if λ0 is an eigenvalue, we obtain F α+β(µ0) = 0.

Conversely, we show that if F α+β(µ0) = 0 for some µ0 �= 0, then λ0 = µ0
2 is

an eigenvalue of L for Γ. If

F α+β(µ0) = P α(µ0)Q
β(µ0) +Qα(µ0)P

β(µ0) = 0,

there exists a real number h such that (11) holds. Then λ0 = µ2
0 is an eigenvalue

for both Γα and Γβ with such h. Let (Ui)γi∈Γα and (Ui)γi∈Γβ denote associated

eigenfunctions for the eigenvalue λ0 = µ2
0. In particular, let Uα

k and Uβ
k denote

eigenfunctions on γk. Since these functions must be given by linear combinations
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of two hyperbolic functions, we can extend the domain of definition to (0, Lk) (or

γk). On γk, these eigenfunctions satisfy the same equation

d2

dξ2
Uk(ξ) = λ0Uk(ξ), 0 < ξ < Lk

and boundary conditions

∂ξU
α
k (ξ0) + hUα

k (ξ0) = 0,

∂ξU
β
k (ξ0) + hUβ

k (ξ0) = 0.

These equalities imply that Uα
k and Uβ

k are not linearly independent on γk so that

C1U
α
k (ξ) ≡ C2U

α
k (ξ), 0 < ξ < Lk

for some (C1, C2) �= (0, 0). Then (C1Ui)γi∈Γα ∪ (C2Ui)γi∈Γβ become an eigenfunc-

tion of L for Γ. Thus we have shown that F (µ) = F α+β(µ) with λ = µ2 is a

characteristic function for Γ.

From the definition (10) we see that F (µ) is a polynomial of σi, µ, hi, sinh(ajµ)

and cosh(ajµ), where aj are some positive constants. Looking at the leading order

term we obtain the property (v). The other properties are easily shown. The proof

is now complete by induction.

Proposition 4.2. Let F be the characteristic function constructed as above. Then

the derivative of F (µ) at µ = 0 is given by

D :=
dF

dµ

∣∣∣∣
µ=0

=
∑
γi∈Γ

σiLi ×
∏
γi∈B

hi +
∑
γi∈B

{
σi

∏
γj∈B\{γi}

hj

}
.

Proof. We prove this by induction. First, for a stationary interface with one triple

junction, D is computed directly from (8) as (1).

Next, let Γ be a stationary interface with two or more triple junctions. We

divide Γ into two parts Γα and Γβ as above, and define Bα and Bβ by

Bα := B ∩ Γα, Bβ := B ∩ Γβ.

Note that Bα and Bβ do not contain γα
k or γβ

k . Suppose that the assertion is true

for Γα and Γβ. Then, by (9), we have

d

dµ
F α(0) = P α

µ (0)h+Qα
µ(0)
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with

P α
µ (0) =

{
σkξ0 +

∑
γi∈Γα\{γα

k }
σiLi

} ∏
γi∈Bα

hi +
∑

γi∈Bα

{
σi

∏
γj∈Bα\{γi}

hj

}
,

Qα
µ(0) = σk

∏
γi∈Bα

hi.

Here the subscript µ means differentiation with respect to µ. Similarly, we have

d

dµ
F β(0) = −P β

µ (0)h+Qβ
µ(0)

with

P β
µ (0) =

{
σk(Lk − ξ0) +

∑
γi∈Γβ\{γβ

k }
σiLi

} ∏
γi∈Bβ

hi +
∑

γi∈Bβ

{
σi

∏
γj∈Bβ\{γi}

hj

}
,

Qβ
µ(0) = σk

∏
γi∈Bβ

hi.

Noting that P α(0) = Qα(0) = P β(0) = Qβ(0) = 0, we obtain

dF α+β

dµ

∣∣∣∣
µ=0

=
1

σk

{
P α

µ (0)Qβ
µ(0) +Qα

µ(0)P β
µ (0)

}

=

{
σkξ0 +

∑
γi∈Γα\{γα

k }
σiLi

} ∏
γi∈Bα

hi

∏
γi∈Bβ

hi

+
∑

γi∈Bα

{
σi

∏
γj∈Bα\{γi}

hj

} ∏
γi∈Bβ

hi

+

{
σk(Lk − ξ0) +

∑
γi∈Γβ\{γβ

k }
σiLi

} ∏
γi∈Bα

hi

∏
γi∈Bβ

hi

+
∑

γi∈Bβ

{
σi

∏
γj∈Bβ\{γi}

hj

} ∏
γi∈Bα

hi

=

{
σkLk +

∑
γi∈Γ\{γk}

σiLi

} ∏
γi∈B

hi +
∑
γi∈B

{
σi

∏
γj∈B\{γi}

hj

}

=
∑
γi∈Γ

σiLi ×
∏
γi∈B

hi +
∑
γi∈B

{
σi

∏
γj∈B\{γi}

hj

}
.

Thus the assertion is true for Γ. The proof is completed by induction.
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5 Proof of Theorem 1.1

We prepare the following lemma on the nondegeneracy of zero eigenvalues.

Lemma 5.1. If at most one of hi (γi ∈ B) is zero, then any zero eigenvalue is

simple.

Proof. Assume that there exists a zero eigenvalue, and denote an associated eigen-

function by (Ui)γi∈Γ. Then each Ui is a linear combination of 1 and s:

Ui = ai + bis.

Take an edge γj ∈ Γ. If we fix the value of bj , the other bk (γk ∈ Γ \ {γj}) are

determined uniquely from (5). Then, for every γi ∈ B with hi �= 0, the value of

ai is given by (3) . Hence other ai (γi ∈ Γ\B) are determined by (4) successively.

As for γi ∈ B with hi = 0, even if it exists, ai is obtained by (4) because the

other ak (γk ∈ Γ, k �= i) has been already determined. Therefore the degree of

freedom of zero eigenfunctions is at most one. This implies the simplicity of the

zero eigenvalue.

Now let us complete the proof of Theorem 1.1.

Proof of Theorem 1.1. We note first that we can deform Ω without changing the

shape of a given stationary interface. Hence we may regard hi (γi ∈ B) as variable

parameters. Without loss of generality, we put B = {γ1, . . . , γk}, and write D as

D(h1, h2, . . . , hk).

Take an edge γi ∈ B. Let hj (γj ∈ B \ {γi}) be nonzero and fixed, and let hi

vary on R. Then D changes its sign at some value of hi, because D is a linear

function of hi. When hi decreases and the sign of D changes, zero points of F

transfer from the imaginary axis to the real axis. At this moment, by Lemma 5.1,

exactly one negative eigenvalue becomes positive so that NU increases by one.

Bearing the above observation in mind, we count the number of positive eigen-

values as follows. Assume first that h1, h2, . . . , hk > 0. Then (6) implies NU = 0.

Next, we decrease the values of h1, h2, . . . , hm one by one to negative values.

By this procedure, the index D can change its sign at most m times and hence

NU ≤ m. On the other hand, Proposition 3.2 shows NU ≥ m − 1. Hence

NU = m− 1 or m. Since D > 0 if h1, h2, . . . , hk > 0, NU is even if D > 0 and is

odd if D < 0. Thus (i) is proved.

Finally, let us consider the existence of zero eigenvalues. If at most one of

hi (γi ∈ B) is zero, then Lemma 5.1 and the above argument imply that a zero

14



eigenvalue appears if and only if D = 0. Suppose that hj = hk = 0 (j �= k).

Then we have D = 0 by Proposition 4.2. Since Γ is of binary-tree type, there

is a unique path on Γ which connects γj and γk. Then we can take a function

(Ui)γi∈Γ such that

(i) Ui is a nonzero constant if γi is on the path,

(ii) Ui is identically equal to zero if γi is not on the path, and

(iii) (Ui)γi∈Γ satisfies (3)∼(5).

Then (Ui)γi∈Γ becomes an eigenfunction associated with the zero eigenvalue. Thus

the proof is complete.
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Figure 1: An interface Γ. The set B is {γi| i = 1, 2, . . . , 6}.
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Figure 2: An interface with two triple junctions
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(a) (b)

Figure 3: Interfaces with four triple junctions; they are topologically different.

3
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Figure 4: The interface devided into two parts. The dotted line stands for the
virtual boundary.
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