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Cubic Pencils and Painlevé Hamiltonians

K. Kajiwara1, T. Masuda2, M. Noumi2, Y. Ohta2 and Y. Yamada2

1 Graduate School of Mathematics, Kyushu University
2 Department of Mathematics, Kobe University

Abstract We present a simple heuristic method to derive the Painlevé differential equations from the
corresponding geometry of rational surafces.

1. Introduction

For each Painlevé equation, there exists an associated rational surface called the “space of initial condi-
tions”. This surface was introduced by Okamoto[1], and further studied by Takano and his collaborators.
By the work of Sioda and Takano[2], the corresponding Painlevé equation was characterized as the unique
Hamiltonian system satisfying certain holomorphy properties on the surface. Hence, in principle, one can
recover the Painlevé equations from geometry.

This geometric approach to the Painlevé equations has been extended to the difference (or discrete)
cases, from which the difference Painlevé equations (and their Bäcklund transformations) arise naturally
as Cremona automorphisms of the surfaces[3]. Compared with the difference cases, however, the way how
the differential Painlevé equations appear is rather indirect. The known method used so far to recover
the differential Painlevé equations from geometry is either to take suitable continuous limit of discrete
ones or to employ a deformation theory [4]. The aim of this note is to present yet another way, which is
heuristic but much simpler.

The main idea of our method is to use cubic pencils. In our previous work[5], it is clarified that the
cubic pencils play the essential role in the discrete Painlevé equation. It is natural to expect that they are
also important in the differential Painlevé equations. Indeed, we find that the cubic pencils are directly
related to the symplectic forms and Hamiltonians.

In Section 2, we explain our method in the case of the sixth Painlevé equation PVI. All the other
degenerate cases are treated in Section 3. Finally, a relation of our cubic pencils and the Seiberg-Witten
curves are discussed in Appendix A.

2. Procedure to obtain Hamiltonian

In this section, using the sixth Painlevé equation PVI as an example, we explain a procedure to obtain
the symplectic 2-form ω and the Hamiltonian H from the datum of the surface: the configuration of nine
points on P2. The parameterization of the points is borrowed from [3].
Case PVI: (Fig.1, Add 4)

The configuration of the nine points for PVI is given as follows,

P1 = (0 : 1 : 0), P2 = (1 : −a2 : 1), P3 = (1 : −a1 − a2 : 1),
P4 = (0 : 0 : 1), P5 = (0 : a3 : 1), P6 = (1 : 0 : 0),
P7 = (1 : a4 : 0), P8 = ((s− 1)ε : 1 : sε), P9 = ((s− 1)ε : 1 : sε− sa0ε

2).
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Figure 1. Configuration for PVI: In the right diagram, the labels i, ij and ijk represent
the divisor classes Ei, Ei−Ej and E0−Ei−Ej−Ek where E0 is the line in P2 and E1, . . . , E9

are the exceptional divisors.

Here variables a0, a1, . . . , a4 and s are parameters parameterizing the configuration. The additional
variable ε is an infinitesimal parameter introduced in order to handle some infinitesimally near points.

The configuration for PVI contains a sequence of infinitely near points P189 = (P1 ← P8 ← P9). Where
Pi ← Pj means that the point Pj belongs to the exceptional curve Ei ' P1 which is the total transform
of Pi. Here, we represent such configuration by using an infinitesimal parameter ε. For instance, the
condition that a curve F (x, y, z) = 0 pass through P18 = (P1 ← P8) can be written as

(1) F = (s− 1)Fx + sFz = 0, (at P1)

or equivalently

(2) F (P8) = F
(
(s− 1)ε, 1, sε

)
= O(ε2).

Similarly, F (x, y, z) = 0 passes through P1, P8 and P9 if and only if

(3) F (P9) = F
(
(s− 1)ε : 1 : sε− sa0ε

2
)

= O(ε3).

Our basic object is a cubic curve passing through the nine points P1, . . . , P9. When the parameters ai

are generic, the cubic curve C0 passing through the nine points is uniquely determined as

(4) G = xz(z − x) = 0.

This cubic determines the symplectic form ω:

(5) ω =
xdy ∧ dz + ydz ∧ dx + zdx ∧ dy

G
,

which can be written as ω = df ∧ dg, with canonical coordinates

(6) f =
z

z − x
, g =

y(z − x)
xz

.

When the parameters ai satisfy the condition δ = a0 + a1 + 2a2 + a3 + a4 = 0, the cubic curve passing
through the nine points forms a pencil (one parameter family) Fig. 2:

(7) λF (x, y, z) + µG(x, y, z) = 0,

where

(8)
F = −(s− 1)y2z + a3(s− 1)yz2 − a4sx

2y + a2(a1 + a2)x2z

+ sxy2 + (a1 + 2a2 + a3 − a3s + a4s)xyz.

In terms of the canonical variables f, g, the pencil equation λF + µG = 0 can be written as λH + µ = 0
where

(9)
H = f(f − 1)(f − s)g2 +

[
(a1 + 2a2)(f − 1)f + a3(s− 1)f + a4s(f − 1)

]
g

+ a2(a1 + a2)(f − 1).

Note that the choice of F involves the ambiguity such as F → c1F + c2G where c1, c2 are constants. This
ambiguity, however, results only in changing H as H → c1H + c2.
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Figure 2. Cubic pencil for PVI configuration

Painlevé eq. Sakai’s list [3] configuration symmetry
PVI Add 4 D

(1)
4 (Fig.1) D

(1)
4

PV Add 5 D
(1)
5 (Fig.3) A

(1)
3

P
D

(1)
6

III Add 6 D
(1)
6 (Fig.4) (2A1)(1)

P
D

(1)
7

III Add 7 D
(1)
7 (Fig.5) A

(1)
1

P
D

(1)
8

III Add 8 D
(1)
8 (Fig.6) S2

PIV Add 9 E
(1)
6 (Fig.7) A

(1)
2

PII Add 10 E
(1)
7 (Fig.8) A

(1)
1

PI Add 11 E
(1)
8 (Fig.9) −

Table 1. The Painlevé equations

At this stage, we drop the condition δ = 0 by hand. We recognize then that H is a Hamiltonian for
PVI

1, namely
Theorem 2.1. With the above Hamiltonian H, the system of differential equation

(10) Dtf =
∂H

∂g
, Dtg = −∂H

∂f
, Dt = s(s− 1)

d

dt
,

ds

dt
= δ,

gives a Hamiltonian form of the sixth Painlevé equation PVI:

(11)

d2f

dt2
=

1
2

(
1
f

+
1

f − 1
+

1
f − s

)(
df

dt

)2

− δ

(
1
s

+
1

s− 1
+

1
f − s

)
df

dt

+
f(f − 1)(f − s)

s2(s− 1)2

(
a2
1

2
− a2

4

2
s

f2
+

a2
3

2
s− 1

(f − 1)2
+

(δ2 − a2
0)

2
s(s− 1)
(f − s)2

)
.

In the next section, we will show similar results for all the cases in Table 1.

1For the autonomous case (δ = 0) the pencil is invariant.
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3. Degenerate cases

In this section, we consider the degenerate cases Add 5-11 in [3]. The constructions are essentially the
same as the previous section (Add 4) and we give only the relevant data.
Case PV: (Fig.3, Add 5)
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Figure 3. Configuration for PV

Condition for the cubic: F (Pi) = 0 (i = 3, 4, 5, 6, 7) and F (P1289) = 0,

(12)
F (1,−a2, 1) = F (0, 0, 1) = F (0, a1, 1) = F (1, 0, 0) = F (1, a3, 0) = 0,

F (ε, 1, ε + sε2 + s(s− a0)ε3) = O(ε4).

Pencil: λF + µG = 0, (δ = a0 + a1 + a2 + a3 = 0)

(13)
F = a3x

2y − xy2 − a2sx
2z + (a1 − a3 − s)xyz + y2z − a1yz2,

G = xz(z − x).

Hamiltonian H and canonical variables f, g:

(14)
H = f(f − 1)g(g + s)− (a1 + a3)fg + a1g + a2sf,

f =
x

x− z
, g =

y(x− z)
xz

.

Theorem 3.1. With the above Hamiltonian H, the system of differential equation

(15) Dtf =
∂H

∂g
, Dtg = −∂H

∂f
, Dt = s

d

dt
,

ds

dt
= δ,

gives a Hamiltonian form of the fifth Painlevé equation PV: (y = 1− 1/f)

(16)

d2y

dt2
=

(
1
2y

+
1

y − 1

) (
dy

dt

)2

− δ

s

df

dt

+
(y − 1)2

s2

(
a2
1

2
y − a2

3

2
1
y

)
+ (a0 − a2)

y

s
− 1

2
y(y + 1)
(y − 1)

.

Case P
D

(1)
6

III : (Fig.4, Add 6)
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Condition for the cubic: F (Pi) = 0 (i = 4, 5, 6, 7) and F (P12389) = 0,

(17)
F (0, 0, 1) = F (0, a1, 1) = F (1, 0, 0) = F (1, b1, 0) = 0,

F (ε, 1, ε + sε3 + s(b1 − a0)ε4) = O(ε5).

Pencil: λF + µG = 0, (δ = a0 + a1 = 0)

(18) F = −b1x
2y + xy2 + sx2z + (b1 − a1)xyz − y2z + a1yz2, G = xz(x− z).

Hamiltonian H and canonical variables f, g:

(19)
H = f2g2 +

[
f2 − (a1 + b1)f − s

]
g − a1f,

f =
y(z − x)

xz
, g =

x

z − x
.

Theorem 3.2. With the above Hamiltonian H, the system of differential equation

(20) Dtf =
∂H

∂g
, Dtg = −∂H

∂f
, Dt = s

d

dt
,

ds

dt
= δ,

gives a Hamiltonian form of the third Painlevé equation P
D

(1)
6

III :

(21)
d2f

dt2
=

1
f

(
df

dt

)2

− δ

s

df

dt
+

f2

s2
(f + a1 − b1)− 1

f
− a0 + 2a1 + b1

s
.

Case P
D

(1)
7

III : (Fig.5, Add 7)
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D
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7

III

Condition for the cubic: F (P46) = F (P57) = F (P12389) = 0,

(22) F (ε, 0, 1) = O(ε2), F (ε, 1 + a1ε, 1) = O(ε2), F (ε, 1, sε3 − a0sε
4) = O(ε5).

Pencil: λF + µG = 0, (δ = a0 + a1 = 0)

(23) F = −sx3 − a1xyz + y2z − yz2, G = x2z.

Hamiltonian H and canonical variables f, g:

(24)
H = f2g2 + (a1f + s)g − f,

f =
yz

x2
, g = −x

z
.

Theorem 3.3. With the above Hamiltonian H, the system of differential equation

(25) Dtf =
∂H

∂g
, Dtg = −∂H

∂f
, Dt = s

d

dt
,

ds

dt
= δ,

gives a Hamiltonian form of the third Painlevé equation P
D

(1)
7

III :

(26)
d2f

dt2
=

1
f

(
df

dt

)2

− δ

s

df

dt
+ 2

f2

s2
− 1

f
+

a0

s
.
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D
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8
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Case P
D

(1)
8

III : (Fig.6, Add 8)
Condition for the cubic: F (P4567) = F (P12389) = 0,

(27) F (ε2, ε, 1) = O(ε4), F (ε, 1, sε3 − asε4) = O(ε5).

Pencil: λF + µG = 0, (δ = a = 0)

(28) F = −sx3 + y2z − xz2, G = x2z.

Hamiltonian H and canonical variables f, g:

(29)
H = f2g2 − f − s

f
,

f =
z

x
, g = −y

z
.

Theorem 3.4. With the above Hamiltonian H, the system of differential equation

(30) Dtf =
∂H

∂g
, Dtg = −∂H

∂f
, Dt = s

d

dt
,

ds

dt
= δ,

gives a Hamiltonian form of the third Painlevé equation P
D

(1)
8

III :

(31)
d2f

dt2
=

1
f

(
df

dt

)2

− δ

s

df

dt
+ 2

f2

s2
− 2

s
.

Case PIV: (Fig.7, Add 9)
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Figure 7. Configuration for PIV

Condition for the cubic: F (P4) = F (P5) = F (P36) = F (P12789) = 0,

(32)
F (0, 0, 1) = F (0, a1, 1) = 0,

F (1,−a2ε, ε) = O(ε2), F (ε, 1, ε2 + sε3 + (s2 − a0)ε4) = O(ε5).

Pencil: λF + µG = 0, (δ = a0 + a1 + a2 = 0)

(33) F = −x2y − a2x
2z − sxyz + y2z − a1yz2, G = xz2.
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Hamiltonian H and canonical variables f, g:

(34)
H = fg(g − f − s)− a2f − a1g,

f =
x

z
, g =

y

x
.

Theorem 3.5. With the above Hamiltonian H, the system of differential equation

(35) Dtf =
∂H

∂g
, Dtg = −∂H

∂f
, Dt =

d

dt
,

ds

dt
= δ,

gives a Hamiltonian form of the fourth Painlevé equation PIV:

(36)
d2f

dt2
=

1
2f

(
df

dt

)2

+
3
2
f3 + 2sf2 +

1
2
[
s2 + 2(a2 − a0)

]
f − a2

1

2f
.

Case PII: (Fig.8, Add 10)













J
J

J
J

J
J

J
JJ r1236789

r5

r4
←−

89 67 123 23 145

78

36

12

r4
r5r9

Figure 8. Configuration for PII

Condition for the cubic: F (P4) = F (P5) = F (P1236789) = 0,

(37) F (0, 0, 1) = F (0, a1, 1) = 0, F (ε, 1, ε3 − sε5 − a0ε
6) = O(ε7).

Pencil: λF + µG = 0, (δ = a0 + a1 = 0)

(38) F = x3 − sx2z − y2z + a1yz2, G = xz2.

Hamiltonian H and canonical variables f, g:

(39) H = g2 + (f2 + s)g + a1f, f =
y

x
, g = −x

z
.

Theorem 3.6. With the above Hamiltonian H, the system of differential equation

(40) Dtf =
∂H

∂g
, Dtg = −∂H

∂f
, Dt =

d

dt
,

ds

dt
= δ,

gives a Hamiltonian form of the second Painlevé equation PII:

(41)
d2f

dt2
= 2f3 + 2sf + (a0 − a1).

Case PI. (Fig.9, Add 11)

r123456789

←−

89 67 45 123 23

78

56

34

12

r9

Figure 9. Configuration for PI
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Condition for the cubic: F (P123456789) = 0,

(42) F (ε, 1, ε3 + sε7 + aε8) = O(ε9).

Pencil: λF + µG = 0: (δ = a = 0)

(43) F = −x3 + y2z − sxz2, G = z3.

Hamiltonian H and canonical variables f, g:

(44) H = g2 − f3 − sf, f =
x

z
, g =

y

z
.

Theorem 3.7. With the above Hamiltonian H, the system of differential equation

(45) Dtf =
∂H

∂g
, Dtg = −∂H

∂f
, Dt =

d

dt
,

ds

dt
= δ,

gives a Hamiltonian form of the first Painlevé equation PI:

(46)
d2f

dt2
= 6f2 + 2s.

Appendix A. Relation to Seiberg-Witten curves

It may be interesting to note that the cubic pencils we considered in this paper are directly related
with the Seiberg-Witten curves appearing in the N = 2 supersymmetric gauge theory with SU(2) gauge
group. The following is the Seiberg-Witten curves given in [6] and [7] (with some parameters rescaled).

(47)

D8 : y2 = x3 − ux2 + 2Λ4
0x.

D7 : y2 = x2(x− u) + 2m1Λ3
1x− Λ6

1.

D6 : y2 = (x2 − Λ4
2)(x− u) + 2m1m2Λ2

2x− (m2
1 + m2

2)Λ
4
2.

D5 : y2 = x2(x− u)− Λ2
3(x− u)2 −

3∑

i=1

m2
i Λ

2
3(x− u)

+ 2m1m2m3Λ3x−
∑

1≤i<j≤3

m2
i m

2
jΛ

2
3.

D4 : y2 = x(x− αu)(x− βu)− 1
4
(α− β)2u2x

2

− (1
4
(α− β)2αβu4 − 1

2
αβ(α2 − β2)s4

)
x

− (α− β)α2β2s4u− 1
4
(α− β)2α2β2u6,

u2 =
4∑

i=1

m2
i , u4 =

∑

1≤i<j≤4

m2
i m

2
j , u6 =

∑

1≤i<j<k≤4

m2
i m

2
jm

2
k,

s4 =
4∏

i=1

mi, α = −ϑ3(τ)4, β = −ϑ2(τ)4.

E8 : y2 = x3 − 2Mx− u.

E7 : y2 = x3 − 2ux− 2Mu + M3 − 4m2
1.

E6 : y2 = x3 − 2(Mu + c2)x− u2 − M3

3
u +

M6

108
− 2M2

3
c2 +

8
3
c3,

ck = mk
1 + mk

2 + mk
3 (c1 = 0).

The correspondence between our cubic pencils and the above Seiberg-Witten curves is a direct conse-
quence of their definition/construction[8] [9][10]. In fact, by compairing the Weierstrass canonical form
of both curves, the relations of the parameters are explicitly determined as in Table 2.
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Painlevé SW curve Relation of parameters
PI E8 s = −2M
PII E7 a1 = 4m1, s = −3M
PIV E6 a1 = 2(m1 −m2), a2 = 2(m2 −m3), s = 2M

PIII
D

(1)
8 D8 s = 2Λ4

0

PIII
D

(1)
7 D7 a1 = 2m1, s = 2Λ3

1

PIII
D

(1)
6 D6 a1 = m1 −m2, b1 = m1 + m2, s = −2Λ2

2

PV D5 a1 = −(m1 + m3), a2 = m1 + m2, a3 = m3 −m1, s = 2Λ3

PVI D4 a1 = m3 + m4, a2 = m2 −m3, a3 = m1 −m2, a4 = m3 −m4, s =
β

α
Table 2. Painlevé equation and Seiberg-Witten curve
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[3] H.Sakai, Rational surfaces with affine root systems and geometry of the Painlevé equations, Commun. Math. Phys.
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