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Conjugate-set game for a nonlinear programming problem 1

H. KAWASAKI

Faculty of Mathematics, Kyushu University 33, Hakozaki 6-10-1, Fukuoka
812-8581, Japan

The conjugate point is a global concept in the calculus of variations. It plays
a crucial role to guarantee optimality. Recently, a conjugate point theory was
proposed for a minimization problem of a smooth function with n variables in
[2] and [3], which matches Jacobi’s classical conjugate point theory. In either
theory, collaboration of variables is essential. Namely, even when a couple of
variables can not improve a solution, collaboration of several variables may find
a better solution. If such a set of variables exists, we call it a strict conjugate
set. Then a simple question arises. How much does each variable of the strict
conjugate set contribute to improve the solution? The aims of this paper are to
emphasize a game-theoretic aspect of the conjugate point and to give an answer
to the above question. To achieve the aims, we will define a cooperative game
based on conjugate sets, which we call the conjugate-set game. Furthermore,
we will compute the Shapley value for the conjugate-set game.

Keywords: Conjugate-set game, Conjugate set, Conjugate point, Collaboration,
Cooperative game, Shapley value, Nonlinear programming problem

1 INTRODUCTION

The conjugate point was introduced by Jacobi to give a sufficient optimality
condition for the simplest problem in the calculus of variations

(SP ) Minimize

∫ T

0

f(t, x(t), ẋ(t))dt subject to x(0) = A, x(T ) = B,

where A and B are given points in Rn, T > 0 fixed, and f is a smooth function.
Conjugate points are defined as zero points of a non-trivial solution y(t) of
the Jacobi equation with the initial condition y(0) = 0. Jacobi proved that if a
feasible solution x(t) satisfies the Euler equation and the strengthened Legendre
condition, and if there are no points conjugate to t = 0 on [0, T ], then x(t) is a
weak minimum for (SP ), see e.g. [1].

Recently, a conjugate point theory was proposed for a minimization problem
of a smooth function f(x) with n variables

(P0) Minimize f(x), x ∈ Rn

in [3]. The Jacobi equation for (P0) is a difference equation that the de-
scending principal minors of the Hesse matrix f ′′(x) satisfy. According to
Sylvester’s criterion, an n × n-symmetric matrix A = (aij) is positive-definite
if and only if its descending principal minors |Ak| (k = 1, . . . , n) are positive,
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where Ak := (aij)1≤i, j≤k, see e.g. [5]. Furthermore, yk := |Ak| satisfies the
following recursion relation.

yk =

k−1
∑

i=0

∑

ρ∈S(i+1,k)

ε(ρ)ai+1ρ(i+1)ai+2ρ(i+2) · · ·akρ(k)yi, k = 1, . . . , n, (1.1)

where y0 := 1, ε(ρ) denotes the sign of ρ, and S(k + 1, n) denotes the set of
all permutations ρ on {k + 1, . . . , n} satisfying that there is no ` > k such that
ρ is closed on {` + 1, . . . , n}. We call the recursion relation (1.1) the Jacobi
equation for A. We say that k is (strictly) conjugate to 1 if the solution {yi} of
the Jacobi equation with the initial condition y0 = 1 changes the sign for the
first time from positive to non-positive (negative) at k. Namely,

y1 > 0, . . . , yk−1 > 0, and yk ≤ 0 (yk < 0), (1.2)

see [2]. Then, it is evident that A is positive definite if and only if there are
no points conjugate to 1. Similarly, if there exists a number k such that k is
strictly conjugate to 1, then A is not nonnegative definite.

By the way, since each variable xk in (P0) plays the same role in general,
there are no reasons to start with k = 1 in order to define conjugate points. So
it is natural to deal with {1, . . . , k} or {x1, . . . , xk} rather than the endpoints 1
and k. This idea leads us to a conjugate set and a cooperative game. We call
the game the conjugate-set game.

This paper is organized as follows. In Section 2, we first define a conjugate
set, and next present a fundamental theorem on conjugate sets. In Section 3,
we introduce the conjugate-set game. We give several examples and compute
their Shapley values.

2 Strict conjugate sets

In this section, we define (minimal strict) conjugate sets and give a fundamental
theorem on conjugate sets.

DEFINITION 2.1 Let A = (aij) be an n × n symmetric matrix, and I =
{i1, . . . , ik} a subset of {1, . . . , n}. If a submatrix (aij)i,j∈I of A has a non-
positive (negative) principal minor, then we call I a (strict) conjugate set. For
the sake of convenience, we call the corresponding set of variables {xk}k∈I a
(strict) conjugate set. When any proper subset J of a (strict) conjugate set I is
not a (strict) conjugate set, we call I (or {xk}k∈I) a minimal (strict) conjugate
set.

THEOREM 2.1 Let A = (aij) be a 2m + 1-multi diagonal matrix, that is,

aij = 0 if |i − j| ≥ m + 1. (2.1)

Then any number of any minimal (strict) conjugate set jumps at most m. In
particular, when A is a tridiagonal matrix, any minimal (strict) conjugate set
consists of sequential numbers.
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Proof. Let I be an arbitrary minimal (strict) conjugate set. Assume that I is
divided into non-empty sets I1 and I2 such that

j − i ≥ m + 1 ∀i ∈ I1, ∀j ∈ I2. (2.2)

Denote by S(I), S(I1), and S(I2) the set of permutations on I, I1, and I2,
respectively. Denote by A(I) the submatrix (aij)i,j∈I . Similarly, we define
A(I1) and A(I2). Then, we get from (2.1) and (2.2) that aiσ(i) = 0 for any
σ ∈ S(I) satisfying

∃i ∈ I1, σ(i) ∈ I2. (2.3)

Hence, we may omit σ ∈ S(I) satisfying (2.3) in the definition of |A(I)|. So,

|A(I)| =
∑

σ∈S(I)

ε(σ)
∏

i∈I

aiσ(i) =
∑

σ∈S(I), σ(I1)=I1

ε(σ)
∏

i∈I

aiσ(i).

For such a σ ∈ SI , we denote by σ1 and σ2 its restriction on I1 and I2, respec-
tively. Then,

|A(I)| =
∑

σ∈S(I), σ(I1)=I1

ε(σ1)ε(σ2)
∏

i∈I1

aiσ1(i)

∏

i∈I2

aiσ2(i)

=





∑

σ1∈S(I1)

ε(σ1)
∏

i∈I1

aiσ1(i)









∑

σ2∈S(I2)

ε(σ2)
∏

i∈I2

aiσ2(i)





= |A(I1)||A(I2)|.

Since I is a (strict) conjugate set, |A(I)| is nonpositive (negative). Hence either
|A(I1)| or |A(I2)| is nonpositive (negative), which contracts the minimality of
I � This completes the proof.

EXAMPLE 2.1 Let S1 denote the sphere with center (3/2, 0, 3/2) and radius
1/

√
2, S2 the sphere with center (−3/2, 0, 3/2) and radius 1/

√
2, and C the

circle in yz−plane with center (0, 0, R) and radius R > 0. Then our problem
is to find (X1, X2, X3) ∈ S1 × S2 × C that minimizes the area of the triangle
X1X2X3. We may take as the objective function

S2 C

S1
X1

X2

X3

Figure 1: Minimal triangle 1

f(θ1, φ1, θ2, φ2, θ3) :=‖ (X1 − X3) × (X2 − X3) ‖2 .
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where

X1 =

(

1√
2

sin θ1 cosφ1 +
3

2
,

1√
2

sin θ1 sin φ1,
1√
2

cos θ1 +
3

2

)

,

X2 =

(

1√
2

sin θ2 cosφ2 −
3

2
,

1√
2

sin θ2 sin φ2,
1√
2

cos θ2 +
3

2

)

,

and
X3 = (0, R sin θ3, R cos θ3 + R)

for some 0 ≤ θ1 ≤ π, 0 ≤ φ1 < 2π, 0 ≤ θ2 ≤ π, 0 ≤ φ2 < 2π, and 0 ≤ θ3 < 2π.
We test whether (X̄1, X̄2, X̄3) := (1, 0, 1,−1, 0, 1, 0, 0, 0) gives a minimal area

S2 S1

X2 X1

X3

C

Figure 2: Minimal triangle 2

or not, that is, whether θ̄ := (θ̄1, φ̄1, θ̄2, φ̄2, θ̄3) := (3π/4, π, 3π/4, 0, π) is a local
minimum of f or not. It is easily seen that θ̄ is a stationary point of f and that
the Hesse matrix f ′′(θ̄) is given by













4 0 −2 0 0
0 3 0 0 −2R
−2 0 4 0 0
0 0 0 3 2R
0 −2R 0 2R 8R(R − 1)













. (2.4)

By exchanging the second row (column) with the third row (column), the Hesse
matrix becomes

A :=













4 −2 0 0 0
−2 4 0 0 0
0 0 3 0 −2R
0 0 0 3 2R
0 0 −2R 2R 8R(R − 1)













. (2.5)

Since the descending principal minors of A are given by

|A1| = 4, |A2| = 12, |A3| = 36, |A4| = 108, |A5| = 24R(2R − 3),

θ̄ is (not) minimal when R > 3/2 (R < 3/2). In particular, when R < 1,
since the last diagonal element 8R(R − 1) is negative, {θ3} is a minimal strict
conjugate set, which implies that the area of the triangle gets bigger by changing
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only θ3. On the other hand, when 1 < R < 3/2, {φ1, φ2, θ3} is a minimal strict
conjugate set, which implies that a certain increment

∆θ := (∆θ1, ∆φ1, ∆θ2, ∆φ2, ∆θ3) = (0, ∆φ1, 0, ∆φ2, ∆θ3)

decreases the objective function. Indeed, when R = 5/4 for example, by taking
∆θ = (0,−∆φ1, 0, ∆φ1,−∆φ1), we have

f(θ̄ + ∆θ) = (cos∆φ1 − 3)2(8 cos2 ∆φ1 − 5 cos∆φ1 + 5)

' 32− 6∆φ2
1 −

∆φ4
1

4
+ O(∆φ5

1).

Hence f(θ̄ + ∆θ) < f(θ̄) for any sufficiently small ∆φ1. Finally, we add a note
from the view point of Theorem 2.1. If we number the variables (θ1, φ1, θ2, φ2, θ3)
as (x1, . . . , x5), then the indices corresponding to the minimal set {φ1, φ2, θ3}
are 2, 4 and 5, which jumps 1.

3 Conjugate-set game

In Example 2.1, we have just seen that if there exists a strict conjugate set,
we can improve a solution by moving the variables of the strict conjugate set
simultaneously. In this section, we give an answer to the question that how
much does each variable of the strict conjugate set contribute to decrease the
objective function. For this purpose, we define a cooperative game based on
conjugate sets and compute its Shapley value.

DEFINITION 3.1 For any subset S of {1, . . . , n}, we define a characteristic
function v(S) by the maximum number 0 ≤ k ≤ n of disjoint strict conjugate
sets contained in S. Let X denote the set of all variables {x1, . . . , xn}. For
any subset XS := {xi; i ∈ S} of X, we defnie v(XS) := v(S). We call this
cooperative game the conjugate-set game.

The following lemma is obvious from the definition of v(S).

LEMMA 3.1 (a) 0 ≤ v(S) ≤ n for any S. (b) v(φ) = 0. (c) If S ∩ T = φ,
then v(S) + v(T ) ≤ v(S ∪ T ).

As is well-known, the Shapley value is defined by

φi(v) =
∑

i∈S

v(S) − v(S − {i})

n

(

n − 1
s − 1

) , (3.1)

where s denotes the cardinal number of S. It is regarded as a measure to
evaluate how much does player i contribute in the cooperative game with the
characteristic function v.

EXAMPLE 3.1 In Example 2.1, {φ1, φ2, θ3} was the unique minimal strict
conjugate set when 1 < R < 3/2. So,

v(Y ) =

{

1 if {φ1, φ2, θ3} ⊂ Y,
0 if {φ1, φ2, θ3} 6⊂ Y.

(3.2)
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Then the Shapley value is given by

φ1(v) = φ3(v) = 0, φ2(v) = φ4(v) = φ5(v) =
1

3
. (3.3)

(3.3) is so expected. In order to present a non-trivial example, we consider the
following extremal problem.

(P1) Minimize f(x) :=

n
∑

k=0

fk(xk, xk+1), x := (x1, . . . , xn) ∈ Rn,

where x0 and xn+1 are given. For example, the shortest polygonal path problem
on a surface S is formulated as (P1), see Example 3.2 below. Problem (P1) has a
nice property that the Hesse matrix is tridiagonal. So, the Jacobi equation (1.1)
reduces to a recursion relation of three adjacent principal minors yk−2, yk−1 and
yk. In [4], we analyzed conjugate points for constant tridiagonal Hesse matrices

A :=













a b

b a
. . .

. . .
. . . b
b a













, (3.4)

where a, b ∈ R. Without loss of generality, we may assume that a > 0 and
b = ±1. Combining Theorem 2.1 and the main result of [4, Theorem 5.1], we
get the following theorem.

THEOREM 3.1 (a) When a ≥ 2, there are no strict conjugate sets. (b) When
0 < a < 2, let k denote the first number satisfying (k + 1)ϕ > π, where ϕ (0 <
ϕ < π) is the argument of the solution of the characteristic equation

y2 − ay + 1 = 0. (3.5)

If k ≤ n, then {1, 2, . . . , k}, {2, 3, . . . , k + 1},. . . , {n − k + 1, n − k + 2, . . . , n}
are minimal strict conjugate sets.

Proof. (a) is a direct consequence of [4, Theorem 5.1]. (b): By [4, Theorem 5.1],
when 0 < a < 2, k is strictly conjugate to 1, which implies that {1, 2, . . . , k}
is a strict conjugate set. On the other hand, by Theorem 2.1, any minimal
strict conjugate set consists of a sequential numbers. Suppose that {1, 2, . . . , k}
is not minimal. Then there exists a pair of numbers (`, m) 6= (1, k) such that
{`, ` + 1, . . . , m}(⊂ {1, 2, . . . , k}) is a minimal strict conjugate set. So, we see
from the form of A that m−`+1(< k) is strictly conjugate to 1. This contradicts
that k is strictly conjugate to 1.

EXAMPLE 3.2 Let S be an ellipsoid defined by

x2

a2
+

y2

a2
+

z2

c2
= 1.

Let us find the shortest polygonal path joining two given points A = (a, 0, 0)
and B = (a cosT, a sinT, 0), where T > 0 and each knot Xk is chosen from
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A B
Xk

Figure 3: Shortest polygonal path problem

a longitude `k := {(a sin θ cos k∆t, a sin θ sin k∆t, c cos θ) : 0 < θ < π} and
∆t := T/(n + 1). Since each knot is expressed as

Xk = (a sin θk cos k∆t, a sin θk sin k∆t, c cos θk)

by some 0 < θk < π, the length of XkXk+1, say fk, is a function of (θk, θk+1).
Hence the total length is given by f(θ1, . . . , θn) :=

∑n

k=0 fk(θk, θk+1), where θ0 =
θn+1 := π/2. Next, let X̄k denote the intersection of the equator and `k. Then
θ̄ := (π/2, . . . , π/2) corresponds to the equatorial polygonal path AX̄1 · · · X̄nB.
It is easily seen that θ̄ is a stationary point of f(θ1, . . . , θn). Furthermore, since

f ′′
k

(π

2
,
π

2

)

=
c2

2a sin ∆t
2

(

d −1
−1 d

)

, d := 1 − 2
a2

c2
sin2 ∆t

2
,

the Hesse matrix f ′′
(

π
2 , . . . , π

2

)

is equal to

c2

2a sin ∆t
2













2d −1

−1 2d
. . .

. . .
. . . −1
−1 2d













. (3.6)

Since 0 < 2d < 2 for any sufficiently small ∆t, this example reduces to case (b)
of Theorem 3.1. So, denoting by k the first number satisfying (k + 1)ϕ > π,
where 0 < ϕ < π the argument of the solution of the characteristic equation
y2 − 2d + 1 = 0, we conclude that {1, 2, . . . , k}, {2, 3, . . . , k + 1},. . . , {n − k +
1, n − k + 2, . . . , n} are minimal strict conjugate sets. As a special case, we
consider the following two cases: (1) n = 5, k = 4 and (2) n = 9, k = 4. In

A B
X1

X2 X3 X4
X5

Figure 4: n = 5, k = 4

the case of n = 5, k = 4,

v(S) =

{

1 if S contains {1,2,3,4} or {2,3,4,5}
0 otherwise.
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Hence

(φ1(v), φ2(v), φ3(v), φ4(v), φ5(v)) =

(

1

20
,

6

20
,

6

20
,

6

20
,

1

20

)

.

In the case of n = 9, k = 4, there are two disjoint minimal strict conjugate

A

BX1
X2
X3
X4 X5

X9
X6 X7 X8

Figure 5: n = 9, k = 4

sets as Fig. 5. So,

v(S) =







2 if Y ⊃ {1, 2, 3, 4} ∪ {6, 7, 8, 9}
1 if Y contains just one minimal strict conjugate set
0 otherwise.

Therefore

(φ1(v), . . . , φ9(v)) =
1

360
(23, 86, 104, 122, 50, 122, 104, 86, 23) ,

which implies that X5 contributes less than X2, X3, X4, X6, X7 and X8.
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