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Introduction

After R. Feynman introduced the path integral named after him, a lot of
mathematical investigations to make this formally defined integral math-
ematically rigorous are made. Apart form these mathematical legacies of
Feynman’s path integrals, many probabilistic studies influenced by his path
integrals have been done. Such probabilistic works were pioneered by M. Kac,
who participated at the lecture presented by R. Feynman at the Cornell Uni-
versity in 1947, and instantaneously had an insight into similarity between
Feynman’s path integrals and the Wiener integrals. He introduced a new di-
rection of studies in the probability theory; exploring in the forest of Wiener
integrals, the mathematically rigorous counterparts to Feynman’s path inte-
grals, keeping a point of view of the path integrals in mind. He established
the celebrated Feynman-Kac formula. The theory of large deviation is one
of fruits born by studies in this direction. The Feynman-Kac formula corre-
sponds to Schrödinger operators with scalar potential, and hence to Laplace
transform type Wiener integrals. So does the the theory of large deviation.

In the asymptotic theory, two methods are widely known; one is the
Laplace method for Laplace transform type integrals, and the other is the
method of stationary phase for Fourier transform type integrals. As for
Wiener integrals, the Laplace method is what is dealt with in the theory of
large deviation. A Fourier transform type Wiener integral arises naturally
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“The mathematical legacy of Feynman’s path integral approach: Analysis, Geometry and
Probability” held at University of Lisbon form June 25 to 28, 2002.
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in the probability theory. Needless to say, a characteristic function is among
typical examples. A Fourier transform type Wiener integral interesting us
more appears in a probabilistic investigation on Schrödinger operators with
vector potential (magnetic field). Namely the heat kernel p(t, x, y) associated
with the Schrödinger operator with magnetic field dθ on R

n, θ being a C∞

1-form, is represented as

p(t, x, y) =

∫

W
exp

[√
−1

∫

wx[0,t]

θ

]
δy(wx(t))µ(dw), t > 0, x, y ∈ R

n,

where W is the classical n-dimensional Wiener space, wx(t) = x + w(t)
(w ∈ W),

∫
wx[0,t]

θ is a stochastic line integral of θ along {wx(s) : s ∈ [0, t]},
and δy(wx(t))µ(dw) stands for the integration with respect to Watanabe’s
pull-back of Dirac’s delta function concentrated at y via the nondegenerate
Wiener functional wx(t). For the definition of the pull-back, see [14, 6].

A Fourier transform type Wiener integral is in general of the form

I(λ; q, ψ) =

∫

W
exp[

√
−1λq(w)]ψ(w)µ(dw),

where q, ψ : W → R are R-valued Wiener functionals and λ ∈ R. We call
I(λ; q, ψ) a stochastic oscillatory integral with phase function q and ampli-
tude function ψ. What we are interested in is the asymptotic behavior of
I(λ; q, ψ) as λ → ∞, which corresponds to, so called, the semiclassical lim-
its in the theory of Feynman’s path integrals (set λ = 1/}, the reciprocal
of the Planck constant). Recalling the well-developed method of stationary
phase on the Euclidean spaces of finite dimension, the investigations of the
asymptotics of stochastic oscillatory integrals may be carried out in three
steps;

(1) to establish a exact expression when the phase function q is quadratic,

(2) to localize the integral around the stationary points of q, i.e. the points
where the gradient of q vanishes,

(3) to introduce a local coordinate system around a stationary point under
which the phase function is quadratic.

In this paper, we discuss about the first two steps.

1 Analyticity

In this section, we review analytic functions on the classical N -dimensional
Wiener space W , the space of R

N -valued continuous functions on [0, T ] start-
ing at the origin at time 0. For a separable Hilbert space E, we denote by
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D
∞,∞−(E) the space of infinitely differentiable E-valued Wiener functionals

in the sense of the Malliavin calculus, whose derivatives of all orders are p-th
integrable with respect to µ for any p ∈ (1,∞). For details see [6, 14]. We
say ψ ∈ D

∞,∞−(R) is analytic (ψ ∈ Cω in notation) if there is p ∈ (1,∞)
such that ∞∑

n=0

rn

n!
‖∇nψ‖Lp(H⊗n) <∞ for any r > 0,

where H is the Cameron-Martin subspace of W , H⊗n is the Hilbert space
of Hilbert-Schmidt n-linear mappings on H, Lp(H⊗n) is the H⊗n-valued p-
th integrable functions with respect to µ, and ∇ stands for the Malliavin
gradient. Choosing appropriate version of Malliavin gradients ∇nψ’s, we
have an expansion

(1) ψ(w + h) =
∞∑

n=0

1

n!
〈∇nψ(w), h⊗n〉H⊗n for every w ∈ W , h ∈ H,

where 〈·, ·〉H⊗n stands for the inner product on H⊗n. See [7, 11]. In what
follows, we always consider such nice versions of ψ and ∇nψ’s as above, and
these versions will be used to evaluate ψ and so on.

Write W ⊕
√
−1H, H ⊕

√
−1H, and W ⊕

√
−1W for W ×H, H ×H,

and W × W , respectively. Then W ⊕
√
−1W is a real Banach space with

norm
‖w +

√
−1w′‖W⊕

√
−1W = ‖w‖W + ‖w′‖W ,

where ‖ · ‖W stands for the Banach norm on W . For their elements (w, h) ∈
W × H, (h, h′) ∈ H × H, and (w,w′) ∈ W × W , we write w +

√
−1h,

h +
√
−1h′, and w +

√
−1w′, respectively. Due to (1), ψ extends to a

function ψ̃ on W ⊕
√
−1H, which we call a holomorphic prolongation of ψ,

so that

ψ̃(w +
√
−1h) =

∞∑

n=0

√
−1 n

n!
〈∇nψ(w), h⊗n〉H⊗n w ∈ W , h ∈ H.

Let H(2) be the space of symmetric Hilbert-Schmidt operator of H to it-
self. If S, T ∈ H (2) possess a common normalized eigenfunctions, say {hn}∞n=1,
and S ≥ −δI for some δ < 1, then, expanding them as S =

∑∞
n=1 snhn ⊗ hn

and T =
∑∞

n=1 tnhn ⊗ hn, we can define ϕS+
√
−1 T ∈ D

∞,∞−(H ⊕
√
−1H) by

ϕS+
√
−1 T (w) =

∞∑

n=1

{
(1 + sn +

√
−1 tn)−1/2 − 1

}
(∇∗hn)(w)hn,
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where ∇∗ denotes the adjoint operator of ∇, and we have regarded hn ∈ H as
a constant H-valued Wiener functional with value hn, and used the branch of
z1/2 so that 11/2 = 1. We use (I +S +

√
−1T )−1/2 to denote a W ⊕

√
−1H-

valued Wiener functional given by

(I + S +
√
−1T )−1/2w = w + ϕS+

√
−1 T (w).

2 Asymptotics and localization

For A ∈ H(2), let QA = (∇∗)2A and LA = ∇∗A. We denote by S the
space of complex valued rapidly decreasing function on R. For ε > 0, put
Gε(x) = (2πε)−1/2 exp[−x2/(2ε)], x ∈ R.

Theorem 2.1. Let A,B ∈ H (2) and ψ ∈ Cω. Suppose that A is injective,
and ψ and its holomorphic prolongation ψ̃ satisfy that

(ψ.1)
∞∑

n=0

rn

n!
‖∇nψ‖2

H⊗n ∈ L1(R) for any r > 0,

(ψ.2) there is an a ∈ R such that

lim
λ→∞

∫

W
ψ̃
(
{I − 2

√
−1 (λA+ ξB2)}−1/2w

)
µ(dw) = a for every ξ ∈ R,

(ψ.3) there exist λ0 ≥ 0, C > 0 and n ∈ N such that

∣∣∣∣
∫

W
ψ̃
(
{I − 2

√
−1 (λA+ ξB2)}−1/2w

)
µ(dw)

∣∣∣∣ ≤ C(1 + |ξ|n)

for every λ ≥ λ0, ξ ∈ R.

If f ≡ 1 or f : R → R is of the form that f = g ∗ Gε for some g ∈ S and
ε > 0, where ∗ stands for the convolution product, then

(2)
{
det2(I − 2

√
−1λA)

}1/2
I(λ;QA, ψ f(‖LB‖2

H)) −→ af(0) as λ→ ∞.

In particular, if f(0) = 1 and a 6= 0 in addition, then

(3)
I(λ;QA, ψ f(‖LB‖2

H))

I(λ;QA, ψ)
−→ 1 as λ→ ∞.

Corollary 2.1. Let A,B ∈ H (2) be as in Theorem 2.1. Suppose that ψ ∈ Cω

enjoys (ψ.1) and
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(ψ.4) there is an a ∈ R such that lim
w ∈ W, h ∈ H,

‖w+
√
−1 h‖W⊕

√
−1W→0

ψ̃(w +
√
−1h) = a,

(ψ.5) there are λ0 ≥ 0, δ > 0, C > 0 and n ∈ N such that

∫

W

∣∣ψ̃
(
{I − 2

√
−1 (λA+ ξB2)}−1/2w

)∣∣1+δ
µ(dw) ≤ C(1 + |ξ|n)

for every λ ≥ λ0, ξ ∈ R.

Then (2) holds provided that f ≡ 1 and f = g∗Gε for some g ∈ S and ε > 0.
Moreover, if f(0) = 1 and a 6= 0 in addition, then (3) holds.

Proof of Corollary 2.1. (ψ.3) follows from (ψ.5). Since the operator H ⊕√
−1H 3 h +

√
−1h′ 7→ (I −

√
−1λA −

√
−1 ξB2)−1/2h ∈ H ⊕

√
−1H

converges to 0 strongly as λ→ ∞, by virtue of [4, Corollary 5.1], we see that
‖{I − 2

√
−1 (λA + ξB2)}−1/2 · ‖W⊕

√
−1W does to 0 in probability. Hence,

due to (ψ.4), ψ̃
(
{I − 2

√
−1 (λA+ ξB2)}−1/2·

)
converges to a in probability.

Thus, in conjunction with the uniform integrability due to (ψ.5), this yields
the convergence as described in (ψ.2).

Remark 2.1. (i) It should be recalled (cf. [7]) that

I(λ;QA,1) =
{
det2(I − 2

√
−1λA)

}−1/2
,

and hence the quantity appearing in (2) is equal to

I(λ;QA, ψ f(‖LB‖2
H))

I(λ;QA,1)
.

(ii) A stationary point of QA is a point where ∇QA vanishes. Mention ([7])
that ∇QA = 2LA. Since A is injective, the origin is the only one station-
ary point of QA. Moreover ‖LB(w)‖W ≤ C‖LB(w)‖H for some C > 0,
and ‖LB(w)‖W determines a measurable norm in the sense of Gross [4].
Hence {‖LB‖2

H < b} is a neighborhood of the origin. If g is of compact
support, then g ∗ Gε(x) decays as fast as exp[−x2/(2ε)] as |x| → ∞. Due
to the factor f(‖LB‖2

H), the main contribution to the the numerator of the
fractional expression in (3) is made by the integration around the origin.
Thus, (3) asserts that the main contribution to the asymptotic behavior of∫
W exp

[√
−1λQA

]
ψ dµ as λ → ∞ comes from the integration around the

origin, the stationary point of QA.
(iii) A sufficient condition for (ψ.3) holds is that there are C ≥ 0 and
0 < δ < δ0/2 such that

|ψ̃(w +
√
−1h)| ≤ C

(
1 + exp

[
δ‖w +

√
−1h‖2

W⊕
√
−1W

])
, w ∈ W , h ∈ H,
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where δ0 > 0 was chosen so that
∫
W exp[δ0‖w‖2

W ]µ(dw) <∞. See [13].
(iv) If φ : W → R is continuous, multilinear, and symmetric, then ψ(w) :=
φ(w, . . . , w) satisfies the conditions (ψ.1), (ψ.4), and (ψ.5). Namely, it holds
that

ψ̃(w +
√
−1h) =

n∑

k=0

(
n

k

)√
−1 kφ(w, . . . , w︸ ︷︷ ︸

n−k

, h, . . . , h︸ ︷︷ ︸
k

) w ∈ W , h ∈ H,

and hence the condition (ψ.5) follows from [4, Theorem 5].

Before proceeding to the proof of Theorem 2.1, we recall a fact about
det2(I + A). For the proof, see [2, XI.9].

Lemma 2.1. Let S, T be Hilbert-Schmidt operators of H ⊕
√
−1H to itself.

Then det2(I + S)tr[{(I + S)−1 − I}T ] is well defined, irrespective to whether
I + S is invertible or not, and it holds that

d

du
det2(I + S + uT ) = det2(I + S + uT )tr[{(I + S + uT )−1 − I}T ].

In particular, if det2(I + S + uT ) 6= 0 for every u ∈ [0, 1] and T is of trace
class, then it holds that

det2(I + S + T ) = det2(I + S) exp

[∫ 1

0

tr[{(I + S + uT )−1 − I}T
]
du

]
.

Proof of Theorem 2.1. Put

q(λ, ξ) =

∫

W
ψ̃
(
{I − 2

√
−1 (λA− ξB2)}−1/2w

)
µ(dw).

By Assumptions (ψ.2) and (ψ.3),

(4) sup
λ≥λ0

|q(λ, ξ)| ≤ C(1 + |ξ|n) and lim
λ→∞

q(λ, ξ) = a for every ξ ∈ R.

Due to [7, Theorem 7.8], we have that

I(λ;QA, ψ) =
{
det2(I − 2

√
−1λA)

}−1/2
q(λ, 0) for any λ ∈ R.

Thus, by (4), the convergence in (2) takes place for f ≡ 1.
Let f = g ∗ Gε for some g ∈ S and ε > 0. There exists g̃ ∈ S such that

g(x) =
∫

R
g̃(ξ)e−

√
−1 xξdξ, and then

(5) f(x) =

∫

R

f̃(ξ)e−
√
−1 xξdξ, where f̃(ξ) = g̃(ξ)e−εξ2/2.
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Since ‖LB‖2
H = QB2 + trB2 (cf.[7]), by virtue of [7, Theorem 7.8] again, we

see that

(6) I(λ;QA, ψ f(‖LB‖2
H))

=

∫

R

dξ f̃(ξ)
{
det2(I − 2

√
−1λA+ 2

√
−1 ξB2)

}−1/2
e−

√
−1 ξtr B2

q(λ, ξ).

By Lemma 2.1, setting

e(λ, ξ) = exp

[∫ ξ

0

tr
({

(I − 2
√
−1λA+ 2

√
−1 ηB2)−1 − I

}
(2
√
−1B2)

)
dη

]

we obtain

det2(I − 2
√
−1λA+ 2

√
−1 ξB2) = det2(I − 2

√
−1λA)e(λ, ξ).

Substituting this into (6), we arrive at

(7)
{
det2(I − 2

√
−1λA)

}1/2
I(λ;QA, ψ f(‖LB‖2

H))

=

∫

R

f̃(ξ)e−
√
−1 ξtr B2 1

e(λ, ξ)1/2
q(λ, ξ)dξ.

It is straightforward to show that

(8)
∣∣tr
({

(I − 2
√
−1λA+ 2

√
−1 ηB2)−1 − I

}
(2
√
−1B2)

)∣∣ ≤ 2trB2.

Hence it holds that

|e(λ, ξ)| ≥ exp
[
−2|ξ|trB2

]
for every λ, ξ ∈ R,

which, combined with (4) and (5), implies that there is a constant C̃ so that

(9)

∣∣∣∣f̃(ξ)e−
√
−1 ξtr B2 1

e(λ, ξ)1/2
q(λ, ξ)

∣∣∣∣ ≤ C̃|g̃(ξ)|(1 + |ξ|n)

for every λ ≥ λ0, ξ ∈ R.

In conjunction with the bounded convergence theorem, (8) also implies that

(10) e(λ, ξ) −→ exp[−2
√
−1 ξ trB2] as λ→ ∞.

Plugging (9) and (10) into (7), and applying the dominated convergence
theorem, we conclude that

{
det2(I − 2

√
−1λA)

}1/2
I(λ;QA, ψ f(‖LB‖2

H)) −→ a

∫

R

f̃(ξ)dξ = af(0).

Thus the proof of (2) has been completed.
The convergence (3) follows from (2) immediately.
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In the above theorem, a key ingredient to see the localization is that
I(λ;QA, ψ)/I(λ;QA, 1) converges. In the remaining of this section, we shall
give examples where a localization occurs while I(λ;QA, ψ)/I(λ;QA, 1) di-
verges.

Example 2.1. Let {hn}n∈Z∗ be an ONB of H, where Z
∗ = Z \ {0}. Fix

1/2 < α < 1, ε > 0 arbitrarily, and put an = −a−n = n−α (n ∈ N),
A =

∑
n∈Z∗

anhn ⊗ hn, and ψε = exp[−
√
−1 εQA]. Suppose that B ∈ H (2)

possesses {hn}n∈Z∗ as eigenfunctions.
Since I(λ;QA, ψε) = I(λ− ε;QA, 1), by Lemma 2.1,

I(λ;QA, ψε)

I(λ;QA, 1)
= exp

[
−ε

√
−1

∫ 1

0

tr
[{(

I − 2
√
−1 (λ− εu)A

)−1 − I
}
A
]
du

]
.

It is straightforward to see

− ε
√
−1

∫ 1

0

tr
[{(

I − 2
√
−1 (λ− εu)A

)−1 − I
}
A
]
du

= 4ε

∫ 1

0

(λ− εu)

( ∞∑

n=1

1

n2α + 4(λ− εu)2

)
du.

If we set

Kα =

∫ ∞

0

dy

y2α + 4
,

then ∞∑

n=1

1

n2α + 4(λ− εu)2
= (λ− εu)−2+(1/α)Kα +O(λ−2),

where O(λ−2) is uniform in u ∈ [0, 1]. Thus we can show that

I(λ;QA, ψε)

I(λ;QA,1)
= exp

[
4εKαλ

(1/α)−1 +O(1)
]
.

Applying Lemma 2.2, which we shall give just after this example, we can
also show that

I(λ;QA, ψε exp[−t‖LB‖2
H/2])

I(λ;QA, ψε)
=
I(λ− ε;QA, exp[−t‖LB‖2

H/2])

I(λ− ε;QA,1)
→ 1

as λ→ ∞.
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Lemma 2.2. Assume that S, T ∈ H (2) possess a common eigenvectors and
no eigenvalue of S vanishes. Then, for t > 0, λ ∈ R and ψ ∈ Cω satisfying
(ψ.1) in Theorem 2.1, it holds

I(λ;QS, ψ exp[−t‖LT‖2
H/2]) =

{
det2(I + tT 2 − 2

√
−1λS) exp[t trT 2]

}−1/2

×
∫

W
ψ̃
(
(I + tT 2 − 2

√
−1λS)−1/2w

)
µ(dw).

Moreover,

I(λ;QS, exp[−‖LT‖2
H/2])

I(λ;QS,1)
=

(
det2(I − 2

√
−1λS)

det2(I + T 2 − 2
√
−1λS) exp[trT 2]

)1/2

→ 1

as λ→ ∞.

Proof. The first identity can be seen in repetition of the argument employed
in the proof of [7, Theorem 7.8].

The first equality in the second assertion is an immediate consequence of
the first identity. To see the convergence, let {sn} and {tn} be eigenvalues of
S and T , respectively. Then

tr
({

(I + uT 2 − 2
√
−1λS)−1 − I

}
T 2
)

=
∞∑

n=1

t2n
1 + ut2n − 2

√
−1λsn

− trT 2,

which, in conjunction with Lemma 2.1 and the dominated convergence the-
orem, implies the desired convergence.

Example 2.2. Let {hn}n∈Z∗ be an ONB of H. Fix α > 1/2, 1/2 < γ < 1,
and bn ∈ R with

∑
n∈Z∗

b2n <∞. In this example, we consider the following two

cases;

Case 1. a−n = an = n−α, b2n = b2−n, and c−n = cn = n−γ , n ∈ N,

Case 2. a−n = −an = n−α, b2n = b2−n, and c−n = cn = n−γ , n ∈ N.

Let m ∈ N and define

A =
∑

n∈Z∗

anhn ⊗ hn, B =
∑

n∈Z∗

bnhn ⊗ hn, ψ =
∑

n∈Z∗

cn
{
(∇∗hn)2m − pm

}
,

where pm = (2m)!/(2mm!). Then we shall see that
(i) It holds that

lim
λ→∞

λ−(1−γ)/α I(λ;QA, ψ exp[−t‖LB‖2
H/2])

I(λ;QA,1)
=

{
K1 in Case 1,

K2 in Case 2,

9



where

K1 = −2pm

∫ ∞

0

(
1 − 1

(1 − 2
√
−1 y−α)m

)
y−γdy and K2 = ReK1.

(ii) In both Case 1 and Case 2, it holds that

lim
λ→∞

I(λ;QA, ψ exp[−t‖LB‖2
H/2])

I(λ;QA, ψ)
= 1.

Proof. Set

Jt(λ) =

∫

W
ψ̃
(
(I + tB2 − 2

√
−1λA)−1/2w

)
µ(dw),

Et(λ) =

(
det2(I − 2

√
−1λA)

det2(I + tB2 − 2
√
−1λA) exp[t trB2]

)1/2

.

Due to Lemma 2.2, we have

I(λ;QA, ψ exp[−t‖LB‖2
H/2])

I(λ;QA,1)
= Et(λ)Jt(λ),(11)

I(λ;QA, ψ exp[−t‖LB‖2
H/2])

I(λ;QA, ψ)
= Et(λ)

Jt(λ)

J0(λ)
,(12)

lim
λ→∞

Et(λ) = 1.(13)

Thus what we need to see is the behavior of Jt(λ) as λ→ ∞.
By virtue of the splitting property of µ, it is easily seen that

Jt(λ) = −pm

m∑

k=1

m∑

j=0

(
m

k

)(
m

j

)
(−1)(3k+j)/22k+jλk+j

×
(∑

n∈Z∗

cna
k+j
n (1 + tb2n)m−j

{(1 + tb2n)2 + 4λ2a2
n}m

)
+ o(1) as λ→ ∞.

Let

At,k,j(λ) =
∞∑

n=1

cna
k+j
n (1 + tb2n)m−j

{(1 + tb2n)2 + 4λ2a2
n}m

=
∞∑

n=1

n−γ+(2m−k−j)α(1 + tb2n)m−j

{n2α(1 + tb2n) + 4λ2}m
.

Since bn → 0 as n→ ∞, we can show that

lim
λ→∞

λk+j−(1−γ)/αAt,k,j(λ) =

∫ ∞

0

y−γ+(2m−k−j)α

{y2α + 4}m
dy ≡ Γk,j.
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Thus, if we put

K̃i = −pm

m∑

k=1

m∑

j=0

(
m

k

)(
m

j

)
(−1)(3k+j)/22k+j{1 + (−1)(i−1)(k+j)}Γk,j,

for i = 1, 2, then

lim
λ→∞

λ−(1−γ)/αJt(λ) =

{
K̃1 in Case 1,

K̃2 in Case 2.

It is straightforward to see that K̃i = Ki, i = 1, 2. Plugging these into (11)
and (12), we obtain the desired assertions (i) and (ii).

3 Explicit expression and exponential decay

In the previous section, we have seen that the stochastic oscillatory integrals
with phase function QA decays as fast as

I(λ;QA,1) = {det2(I − 2λ
√
−1A)}−1/2.

It is natural to ask how fast the determinant decays. In this section, we state
results related to this question by giving an explicit expression of I(λ;QA,1).

Given A ∈ H(2), decompose as

A =
∞∑

n=1

anhn ⊗ hn,

where an ∈ R satisfies that
∑∞

n=1 a
2
n <∞ and {hn}∞n=1 is an ONB of H. For

` ∈ H, define

fA,`(x) =
1

2

∑

n: xan>0

{
1

|x| +
〈`, hn〉2H
|an|3

}
e−x/an , x 6= 0,

and fA,`(0) = 0. Then (1 ∧ |x|2)fA,`(x) is integrable on R, and so is (eiλx −
1 − iλx)fA,`(x). See [8]. We have

Theorem 3.1 ([8]). Let A ∈ H (2), ` ∈ H, and γ ∈ R.
(i) It holds

I(λ; 1
2
QA + ∇∗`+ γ,1)

= exp

[
−‖`A‖2

H

2
λ2 +

√
−1λγ +

∫

R

(
e
√
−1 λx − 1 −

√
−1λx

)
fA,`(x)dx

]
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for any λ ∈ R, where `A =
∑

n:an=0〈`, hn〉Hhn.
(ii) If `A = 0 and there exists a > 0 such that

lim sup
λ→∞

λ−a

∫

R

(
cos(λx) − 1

)
fA,`(x)dx < 0,

then there exist C, λ0 > 0 such that

∣∣I(λ; 1
2
QA + ∇∗`+ γ,1)

∣∣ ≤ exp
[
−Cλa

]
for every λ ≥ λ0.

Moreover, in this case, for any δ > 1/a, the distribution on R of 1
2
QA+∇∗`+γ

under µ admits a density function in the Gevrey class of order δ with respect
to the Lebesgue measure.

The theorem asserts that the distribution of 1
2
QA + ∇∗` + γ is infinitely

divisible, and the corresponding Lévy measure is fA,`(x)dx. Moreover, the
distribution of 1

2
QA + γ is selfdecomposable. See [9, §8 and §15].

Put N+(y) = #{n : an > 1/y}. If limy→∞ e−cyN+(y) = 0 for any
c > 0, and lim infy→∞ y−aN+(y) > 0 for some a > 0, then this a satisfies the
condition described in the theorem.

As an application of Theorem 3.1, we can show that a hypersurface in W
determined by quadratic Wiener functional gets flatter at infinity. To state
our result, we prepare a lemma on the nondegeneracy of QA.

Lemma 3.1. Let A ∈ H (2) and suppose that the range R(A) of A is of
infinite dimension. Then QA/2 is smooth and nondegenerate in the sense of
the Malliavin calculus.

Proof. It suffices to show that QA/2 is nondegenerate. Decompose as A =∑∞
n=1 anhn ⊗ hn, and take 1 ≤ n1 < n2 < · · · < nj < . . . such that anj

6= 0,
j = 1, 2, . . . , and an = 0 if n /∈ {nj; j ∈ N}. Fix m ∈ N arbitrarily. Then,
there exists Cm > 0 such that

‖∇QA‖2
H =

∞∑

j=1

a2
nj

(
∇∗hnj

)2 ≥ Cm

m∑

j=1

(
∇∗hnj

)2
.

Recalling that

(14)

∫

Rm

|z|−pe−|z|2/2dz =

{
<∞, if p < m,

= ∞, if p ≥ m,

we see that ‖∇QA‖−1
H belongs to Lm−1(µ). Since m is arbitrary, QA/2 is

nondegenerate in the sense of the Malliavin calculus.
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Theorem 3.2. Let A ∈ H (2) and suppose that dimR(A) = ∞.
(i) Let h ∈ H satisfy hA = 0. Suppose that there exist α, β > 0 such that

lim inf
|ξ|→∞

|ξ|−α

∫

R

(1 − cos(ξy))fA(y)dy > 0,(15)

lim inf
|ξ|→∞

|ξ|β〈h, (I + ξ2A2)−1h〉 > 0,(16)

where the limits may be infinity. Then, for each 0 < α′ < α, there exist
C1, C2 > 0 such that

(17)

∣∣∣∣
∫

W
e
√
−1 λ∇∗hδx(QA/2)dµ

∣∣∣∣ ≤ C1 exp
[
−C2|λ|2α′/(α′+β)

]

for any λ ∈ R.
(ii) For any β > 0, there exists h ∈ H such that hA = 0 and (16) holds.

The second assertion of the the theorem reflects that {QA/2 = x} gets
flatter at infinity. To see this, first recall that

∫
W eiλ∇∗hdµ = e−λ2‖h‖2

H/2.
We call this a flat case, since W is flat. Next suppose that A is of trace
class. Due to the splitting property of µ, we think of {∇∗hn} as a coordi-
nate system of W . Then {QA/2 = x} is regarded as an elliptic quadratic
hypersurface given by

∑∞
n=1 a

2
n(∇∗hn)2 = 2x + trA, say S∞

A . Let S∞
A,k =

S∞
A ∩{∑∞

n=k a
2
n(∇∗hn)2 = 2x+trA}. The minimal radius of elliptic quadratic

hypersurface S∞
A,k is more than 1/ sup{|an| : n ≥ k}. Since an → 0 as n→ ∞,

the minimal radii of elliptic quadratic hypersurface S∞
A,k ⊂ S∞

A tend to infin-
ity as k → ∞. This means S∞

A,k gets flatter as k → ∞. Choosing h associated
with SA,k, we can make the order of the exponential decay closer to the one
for the flat case.

Proof of Theorem 3.2. (i) Due to the splitting property of µ, we may and
will assume that A is not singular, i.e., an 6= 0 for any n = 1, 2, . . . It holds
that

(18)

∫

W
e
√
−1 λ∇∗hδx(QA/2)dµ

=
1

2π

∫

R

e−
√
−1 ξx

(∫

W
e
√
−1 λ∇∗he

√
−1 ξQA/2dµ

)
dξ.

Thus what we need to estimate is the integral
∫
W e

√
−1 λ∇∗he

√
−1 ξQA/2dµ.
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By a complex change of variables formula established in [7] and Theo-
rem 3.1, we obtain

∫

W
e
√
−1 λ∇∗he

√
−1 ξQA/2dµ

= exp

[∫

R

(
e
√
−1 ξy − 1 −

√
−1 ξy

)
fA,0(y)dy −

λ2

2
n(ξ, h)

]
,

where n(ξ, h) =
∑∞

n=1〈h, hn〉2/(1 −
√
−1 ξan). Noting that Ren(ξ, h) =

〈h, (I + ξ2A2)−1h〉, we obtain

∣∣∣∣
∫

W
e
√
−1∇∗he

√
−1 ξQA/2dµ

∣∣∣∣

= exp

[
−
∫

R

(1 − cos(ξy))fA,0(y)dy −
λ2

2
〈h, (I + ξ2A2)−1h〉

]
.

By (15) and the continuity of the mapping ξ 7→
∫

R
(1 − cos(ξy))fA,0(y)dy,

there exist K1, K2, K3 > 0 and M > 0 such that

(19)

∣∣∣∣
∫

W
e
√
−1 λ∇∗he

√
−1 ξQA/2dµ

∣∣∣∣

≤
{
K1 exp

[
−λ2〈h, (I +M 2A2)−1h〉/2

]
, |ξ| ≤M,

−K2|ξ|α −K3λ
2|ξ|−β, |ξ| ≥M.

Plugging this into (18), we obtain

(20)

∣∣∣∣
∫

|ξ|≤M

e−
√
−1 ξx

(∫

W
e
√
−1 λ∇∗he

√
−1 ξQA/2dµ

)
dξ

∣∣∣∣

≤ 2K1M exp
[
−λ2〈h, (I +M 2A2)−1h〉/2

]

for any λ ∈ R. Moreover, (19) yields that, for any L > M and 0 < α′ < α,

∣∣∣∣
∫

|ξ|≥M

e−
√
−1 ξx

(∫

X

e
√
−1 λ∇∗he

√
−1 ξQA/2dµ

)
dξ

∣∣∣∣

≤
∫

M≤|ξ|≤L

exp[−K2|ξ|α −K3λ
2|ξ|−β]dξ

+

∫

L≤|ξ|
exp[−K2|ξ|α −K3λ

2|ξ|−β]dξ

≤ exp[−λ2L−β]

∫

R

exp[−K2|ξ|α]dξ + exp[−K2L
α′

]

∫

R

exp[−K2|ξ|α−α′
]dξ.
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Substituting L = λ2/(α′+β) into the above estimation, we find C,C ′ > 0 such
that
∣∣∣∣
∫

|ξ|≥M

e−
√
−1 ξx

(∫

W
e
√
−1 λ∇∗he

√
−1 ξQA/2dµ

)
dξ

∣∣∣∣ ≤ C exp
[
−C ′|λ|2α′/(α′+β)

]

for any λ ∈ R. In conjunction with (20), this implies (17).

(ii) Due to the splitting property of the Wiener measure µ, without loss of
generality we may assume that A is nonsingular. Then obviously hA = 0 for
any h ∈ H.

Fix β > 0 and put q = (β + 1)/2 > 1/2. Since dimR(A) = ∞ and
an → 0, we can define n(k), k = 0, 1, 2, . . . , by n(0) = 0 and n(k) = min{n >
n(k − 1) : |an| < 1/k}, k ≥ 1. Set

bn =

{
k−q, if n = n(k), k = 1, 2, . . . ,

0, otherwise,
and h =

∞∑

n=1

bnhn.

Then h ∈ R(A) and

(21) 〈h, (I + ξ2A2)−1h〉 =
∞∑

k=0

k−2q

1 + ξ2a2
n(k)

≥
∞∑

k=0

k2−2q

k2 + ξ2
.

For a, b ∈ R with b, c > 0 and b− a > 1, we can easily see that

lim inf
c→∞

c1−{(1+a)/b}
∞∑

n=1

na

nb + c
≥
∫ ∞

0

ya

yb + 1
dy > 0,

where the integral may be infinity. Hence, we can conclude from (21) that

lim inf
|ξ|→∞

|ξ|β〈h, (I + ξ2A2)−1h〉 = lim inf
|ξ|→∞

|ξ|(2q−1)〈h, (I + ξ2A2)−1h〉 > 0.

4 Cameron-Martin transform and Jacobi eq-

uation

In the preceding sections, the observations are based on the splitting property
of the Wiener measure. Another approach to stochastic oscillatory integrals,
which we show in this section, is based on the Itô calculus and the Cameron-
Martin transform on the Wiener space. In this approach, Euler (Jacobi)
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equations associated with Lagrange functions appear in the expression. Such
an appearance of ODE’s in classical mechanics are well known in the Feynman
path integral theory. For example, see [3, 10].

Let T > 0 and α, β ∈ C1([0, T ]; Rn×n), R
n×n being the space of real n×n

matrices. Define

qα,β =
1

2

∫ T

0

{
α(t)w(t), dw(t)〉Rn + 〈β(t)w(t), w(t)〉Rndt

}
,

where 〈·, ·〉Rn denotes the standard inner product on R
n and dw(t) does the

Itô integral. For z ∈ C, let Pz(t) be a solution to a Jacobi equation

P ′′
z (t) − zα(t)P ′

z(t) + z
{
β(t) − (α′(t)/2)}Pz(t) = 0, t ∈ [0, T ],

Pz(T ) = I, P ′
z(T ) = zα(T )/2.

Let Ω be the set of all z ∈ C such that detPz(t) 6= 0 for any t ∈ [0, T ]. For
z ∈ Ω, we define a transform Tz on W by

Tzw(t) = −Pz(t)

∫ t

0

(
P−1

z

)′
(s)w(s)ds, t ∈ [0, T ].

Theorem 4.1 ([12]). Suppose that tα(s) = −α(s) and tβ(s) = β(s) for any
s ∈ [0, T ]. Let ψ ∈ Cω(W) satisfy the conditions (ψ.1, 2&3) described in
Theorem 2.1. Then it holds

∫

W
ezqα,βψdµ =

1√
detPz(0)

∫

W
ψ(w + Tzw)µ(dw)

for any z ∈ Ω0, the connected component of Ω containing the origin.

A similar expression of a Wiener integral

∫

W
exp

[
−z

2

∫ T

0

X(t)2dt

]
ψdµ

via a Riccati equation is also available when X(t) is a Gaussian process asso-
ciated with n-solitons. Moreover, we can show a relation between covariance
functions of Gaussian processes and scattering data for reflectionless poten-
tials for n-solitons. The details will be discussed in the forthcoming paper
[5].
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