The Non-Existence of Certain Mod 2 Galois Representations of Some Small Quadratic Fields

Moon, Hyunsuk
Faculty of Mathematics, Kyushu University

Taguchi, Yuichiro
Faculty of Mathematics, Kyushu University

http://hdl.handle.net/2324/10750
THE NON-EXISTENCE OF CERTAIN MOD 2 GALOIS REPRESENTATIONS OF SOME SMALL QUADRATIC FIELDS

HYUNSUK MOON AND YUICHIRO TAGUCHI

Abstract. For a few quadratic fields, the non-existence is proved of continuous irreducible mod 2 Galois representations of degree 2 unramified outside \(\{2, \infty\} \).

1. Introduction

In this paper, we prove the following theorem, which settles some special cases of versions (cf. Conj. 1.1 of [3], Conj. 1 of [11] and Question 1 in Sect. 5 of [5]) of Serre’s modularity conjecture ([13], [15]) for a few quadratic fields:

Theorem. Let \(F \) be one of the following quadratic fields:

\[\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{5}), \mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2}), \mathbb{Q}(\sqrt{-3}), \mathbb{Q}(\sqrt{-5}). \]

Then there exist no continuous irreducible representations \(\rho : G_F \to \text{GL}_2(\mathbb{F}_2) \) unramified outside \(\{2, \infty\} \).

Here, \(G_F \) denotes the absolute Galois group \(\text{Gal}(\overline{F}/F) \) of \(F \), and \(\mathbb{F}_2 \) is an algebraic closure of the finite field \(\mathbb{F}_2 \) of two elements.

The proof is based on the method of discriminant bound as in [17], [14], [1], [7], [8], [2]. However, we need to improve the known upper bounds at the prime 2. This is done in Section 2. The proof of the Theorem is given in Section 3.

It is desirable to have such a theorem for mod \(p \) representations for other primes \(p \), but this seems impossible at least by our method.

Acknowledgments. We thank A. Ash, F. Diamond, C. Khare, K. Klosin, T. Saito, J.-P. Serre and R. Taylor for their information on the literature on various versions of Serre’s modularity conjecture and/or comments on the first version of this paper. The writing of this paper was greatly encouraged by “Ecole d’été sur la conjecture de modularité de Serre”, Luminy, 9–20, July, 2007. We thank its organizers, in particular J.-M. Fontaine, and speakers for their big efforts.

Convention. For a finite extension \(E/F \) of non-Archimedean local fields, we denote by \(\mathcal{D}_{E/F} \) the different ideal of \(E/F \). The 2-adic valuation \(v_2 \) is normalized by \(v_2(2) = 1 \), and is used to measure the order of ideals (such as \(\mathcal{D}_{E/F} \)) in algebraic extensions of

2000 Mathematics Subject Classification. 11R39, 11F80, 11R32.
the 2-adic field \(\mathbb{Q}_2 \). We denote by \(\begin{pmatrix} * & * \\ * & * \end{pmatrix} \) and \(\begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \) respectively the subgroups \(\{ (a \ b) \} \) and \(\{ (1 \ t) \} \) of \(\text{GL}_2(\mathbb{F}_2) \).

2. Local lemmas

Let \(F \) be a finite extension of \(\mathbb{Q}_2 \), \(D = G_F \) its absolute Galois group, and \(I \) its inertia subgroup. In this section, we consider mod 2 representations \(\rho : D \to \text{GL}_2(\mathbb{F}_2) \) of \(D \).

Let \(E/F \) be the extension cut out by \(\rho \). We shall estimate the different \(D_{E/F} \) of \(E/F \). Let \(E_0 \) (resp. \(E_1 \)) be the maximal unramified (resp. tamely ramified) subextension of \(E/F \), and let \(e_1 = [E_1 : E_0] \) be the tame ramification index of \(E/F \). Then we have \(D_{E/F} = D_{E/E_1} D_{E_1/E_0} \), and \(v_2(D_{E_1/E_0}) = (1 - 1/e_1)/e_F \), where \(e_F \) is the ramification index of \(F/\mathbb{Q}_2 \). Thus it remains for us to calculate \(D_{E/E_1} \). We assume \(E/F \) is wildly ramified, with wild ramification index \(2^m \). Then the wild inertia subgroup \(G_1 \) of \(G := \text{Im}(\rho) \) is a non-trivial 2-group and, after conjugation, we may assume it is contained in \(\begin{pmatrix} * & 1 \\ 0 & * \end{pmatrix} \). Since \(G_1 \) is normal in \(G \) and the normalizer of \(G_1 \) in \(\text{GL}_2(\mathbb{F}_2) \) is \(\begin{pmatrix} * & * \\ * & * \end{pmatrix} \), we may assume that \(\rho \) is of the form

\[
(2.1) \quad \rho = \begin{pmatrix} \psi_1 & * \\ \psi_2 & \end{pmatrix},
\]

where \(\psi_i : D \to \mathbb{F}_2^\times \) are characters of \(D \). Note that the \(\psi_i \)'s have odd order, so that they are at most tamely ramified.

Lemma 1. Let the notation be as above. Assume further that \(F/\mathbb{Q}_2 \) has ramification index 2. If \(E/F \) has ramification index \(2^m \) (i.e. if \(e_1 = 1 \)), then there exists a non-negative integer \(m_2 \leq m \) such that

\[
v_2(D_{E/F}) = \begin{cases} \frac{9}{4} - \frac{2^{m+1}}{2^m} & \text{and } m_2 \leq m - 1; \text{ or} \\ \frac{2}{2} - \frac{2^{m+1}}{2^m}. \end{cases}
\]

If \(\rho \) is non-abelian, then the former case does not occur.

Here, we say \(\rho \) is (non-)abelian if the group \(\text{Im}(\rho) \) is (non-)abelian.

Proof. By assumption, we have \(E_1 = E_0 \) and the characters \(\psi_i \) are unramified. By local class field theory, the Galois group \(G_1 = \text{Gal}(E/E_1) \), which is an elementary 2-group, is identified with a quotient of the group \((1 + \pi A)/(1 + \pi A)^2 \), where \(A \) is the ring \(O_{E_1} \) of integers of \(E_1 \), \(\pi \) is a uniformizer of \(A \), and \((1 + \pi A)^2 \) is the subgroup of the square elements in the multiplicative group \((1 + A) \). The character group \(X = \text{Hom}(G_1, \mathbb{C}^\times) \) of \(G_1 \) is identified with a subgroup of \(\text{Hom}((1 + \pi A)/(1 + \pi A)^2, \mathbb{C}^\times) \). The subgroup \(X_1 \) of \(X \) consisting of the characters with conductor dividing \(\pi^4 \) is identified with a subgroup of \(\text{Hom}((1 + \pi A)^4/(1 + \pi^4 A)(1 + \pi A)^2, \mathbb{C}^\times) \). It is easy to see that

\[
\{1\} = X_1 \subset X_2 = X_3 \subset X_4 \subset X_5 = X.
\]
Indeed, the equality $X_2 = X_3$ follows from the fact that $(1 + \pi^2 A) = (1 + \pi^3 A)(1 + \pi A)^2$, and the equality $X_5 = X$ follows from the fact that $(1 + \pi^5 A) \subset (1 + \pi A)^2$; cf. the proof Lemma 2.1 of [7]. Just as in [17], we can show that the index $(X_5 : X_4)$ is 1 or 2, since the image of $(1 + \pi^4 A)$ in $(1 + \pi A)/(1 + \pi A)^2$ has order 2. To see this, consider the equation

\[(2.2) \quad 1 + a\pi^4 = (1 + x\pi^2)^2\]

for a given $a \in A^\times$ and unknown $x \in A^\times$. If $2 = c\pi^2$ with $c \in A^\times$, then the equation (2.2) has a solution x if and only if the congruence $cx + x^2 \equiv a \pmod{\pi}$ has a solution. Since the F_2-linear map $\wp : A/\pi A \rightarrow A/\pi A$ given by $x \mapsto cx + x^2$ has $\dim_{F_2} \Coker(\wp) = 1$, the equation (2.2) has a solution for “half” of the a’s.

By assumption, X_5 has order 2^m. Suppose X_2 has order 2^{m_2}. Then the 2-adic order of the different $D_{E/F} = D_{E/E_1}$ can be calculated as follows by using the Führerdiskriminantenproduktformel ([12], Chap. VI, §3):

(1-i) If $(X_5 : X_4) = 2$, then

$$v_2(D_{E/F}) = \frac{1}{2} \cdot \frac{1}{2^{m_2}} \left((2^m - 2^{m_1}) \times 5 + (2^{m_1} - 2^{m_2}) \times 4 + (2^{m_2} - 1) \times 2\right)$$

$$= \frac{9}{4} - \frac{2^{m_2} + 1}{2^m}.$$

(1-ii) If $(X_5 : X_4) = 1$, then

$$v_2(D_{E/F}) = \frac{1}{2} \cdot \frac{1}{2^{m_2}} \left((2^m - 2^{m_2}) \times 4 + (2^{m_2} - 1) \times 2\right) = 2 - \frac{2^{m_2} + 1}{2^m}.$$

Let ψ_i be the characters in (2.1). If ρ is non-abelian (or equivalently, if $\psi_1 \neq \psi_2$ as characters on D), then $\Gal(E_0/F) = G/G_1$ acts on G_1 (identified with a subgroup of $(1 \ 1)$) via $\psi_1\psi_2^{-1}$ (cf. [10], Proof of Prop. 2.3). This induces a similar action on X which respects the filtration X_i. Each orbit by this action has odd cardinality $|\Im(\psi_1\psi_2^{-1})|$, while $X_5 \setminus X_4$ has 2-power cardinality if it is non-empty. Thus we must have $X_5 = X_4$, and we are in the case (1-ii) above. □

Specializing the F/Q_2, we calculate the value of $v_2(D_{E/F})$ more precisely as follows:

Lemma 2. Assume F/Q_2 is a totally ramified quadratic extension. Then the extension E/F has ramification index 2^m. If ρ is non-abelian, then there exists a non-negative integer $m_2 \leq m$ such that

$$v_2(D_{E/F}) = 2 - \frac{2^{m_2} + 1}{2^m}.$$
If ρ is abelian, then we have $m \leq 3$ and $v_2(\mathcal{D}_{E/F}) \leq 15/8$. In fact, more precisely, we have:

$$v_2(\mathcal{D}_{E/F}) = \begin{cases}
15/8 & \text{if } m = 3, \\
7/4, 3/2 \text{ or } 5/4 & \text{if } m = 2, \\
5/4, 1 \text{ or } 1/2 & \text{if } m = 1.
\end{cases}$$

Proof. F/\mathbb{Q}_2 being totally ramified, any abelian extension of F has no non-trivial tame ramification since \mathcal{O}_F^\times is a pro-2 group. Thus the characters ψ_i in (2.1) are unramified, and E/F has ramification index 2^m.

If ρ is non-abelian, then $v_2(\mathcal{D}_{E/F})$ has the second value in Lemma 1. If ρ is abelian (or equivalently, if $\psi_1 = \psi_2$ as characters on D), then G_1 is identified with a quotient of $\mathcal{O}_F^\times/(\mathcal{O}_F^\times)^2$. The group $\mathcal{O}_F^\times/(\mathcal{O}_F^\times)^2$ has order 8. The different is the largest in the case where $G_1 \simeq (\mathcal{O}_F^\times)/(\mathcal{O}_F^\times)^2$, in which case $m = 3$, $(X_5 : X_4) = (X_4 : X_3) = (X_2 : X_1) = 2$, and

$$v_2(\mathcal{D}_{E/F}) = \frac{1}{2} \cdot \frac{1}{8} (4 \times 5 + 2 \times 4 + 1 \times 2) = \frac{15}{8}.$$

Other cases can be calculated similarly. Note that $(X_{i+1} : X_i) = 1$ or 2 since the residue field of \mathcal{O}_F is \mathbb{F}_2. \hfill \square

Recall that $e_1 = [E_1 : E_0]$ denotes the tame ramification index of E/F.

Lemma 3. If F/\mathbb{Q}_2 is the unramified quadratic extension, then we have $e_1 = 1$ or 3. If ρ is non-abelian, there exist non-negative integers $m_2 \leq m_4 \leq m$ such that

$$v_2(\mathcal{D}_{E/F}) = \begin{cases}
2 - \frac{1}{2^{m-1}} & \text{if } e_1 = 1, \\
\frac{2}{3} - \frac{2^{m+2m^2+1}}{3^{2m-4}} & \text{if } e_1 = 3.
\end{cases}$$

If ρ is abelian, then $m \leq 3$ and $v_2(\mathcal{D}_{E/F}) \leq 35/12$. In fact, more precisely, we have:

$$v_2(\mathcal{D}_{E/F}) = \begin{cases}
35/12 & \text{if } m = 3, \\
8/3 \text{ or } 13/6 & \text{if } m = 2, \\
13/6 \text{ or } 5/3 & \text{if } m = 1,
\end{cases}$$

if $e_1 = 3$. If $e_1 = 1$, then the values of $v_2(\mathcal{D}_{E/F})$ are the above values minus 2/3.

Proof. By local class field theory, the characters ψ_i in (2.1) are identified with characters of $F^\times/(1 + 2\mathcal{O}_F)^\times$. Since $\mathcal{O}_F^\times/(1 + 2\mathcal{O}_F)^\times \simeq \mathbb{F}_2^\times$, the tamely ramified extension E_1/E_0 has degree either 1 or 3.

As in the proof of Lemma 1, identify the Galois group $G_1 = \text{Gal}(E/E_1)$ (resp. the character group $X = \text{Hom}(G_1, \mathbb{C}^\times)$) with a quotient of $(1 + \pi A)/(1 + \pi A)^2$ (resp. a subgroup of $\text{Hom}((1 + \pi A)/(1 + \pi A)^2, \mathbb{C}^\times)$), where $A = \mathcal{O}_{E_1}$ and π is a uniformizer of A. Let X_i be the subgroup of X consisting of the characters of G_1 with conductor dividing π^i.

If $e_1 = 1$, then the value of $v_2(\mathcal{D}_{E/F})$ can be calculated as in Proposition 2.3 of [10]; we have $\{1\} = X_1 \subset X_2 \subset X_3 = X$ and $(X_3 : X_2) \leq 2$. If ρ is abelian (i.e.
ψ_1 = ψ_2), then X is in fact identified with a subgroup of the character group of \((1 + 2\mathcal{O}_F)/(1 + 2\mathcal{O}_F)^2\), and one has \((X_2 : X_1) \leq 4\) since \(F\) has residue field \(\mathbb{F}_4\). Thus \(|X_3| \leq 8\), and

\[
v_2(D_{E/F}) = \begin{cases}
\frac{1}{8}(4 \times 3 + 3 \times 2) = \frac{9}{4} & \text{if } m = 3, \\
\frac{1}{4}(2 \times 3 + 1 \times 2) = 2 & \text{or} \\
\frac{1}{4}(3 \times 2) = \frac{3}{2} & \text{if } m = 2, \\
\frac{3}{2} & \text{or } \frac{3}{2} = 1 & \text{if } m = 1.
\end{cases}
\]

If \(ρ\) is non-abelian (i.e. \(ψ_1 ≠ ψ_2\)), then as in the last part of the proof of Lemma 1, we have \(X_3 = X_2\), and hence

\[v_2(D_{E/F}) = \frac{1}{2m} ((2^m - 1) \times 2) = 2 - \frac{1}{2^{m-1}}.\]

Assume \(e_1 = 3\). Then as in the proof of Lemma 1, one can show that

\[\{1\} = X_1 ⊂ X_2 = X_3 ⊂ X_4 = X_5 ⊂ X_6 ⊂ X_7 = X,\]

with \((X_7 : X_6) = 1\) or 2. By assumption, \(X_7\) has order \(2^m\). Suppose \(|X_2| = 2^{m_2}\) and \(|X_4| = 2^{m_4}\). If \(ρ\) is abelian, then \(X\) is identified with a subgroup of the character group of \((1 + 2\mathcal{O}_F)/(1 + 2\mathcal{O}_F)^2\) (so \(X_1 = X_2\) and \(X_5 = X_6\)), and \(v_2(D_{E/E_1})\) is calculated to have the same values as in (2.3). Adding the tame part \(v_2(D_{E_1/E_0}) = 2/3\), we see that \(v_2(D_{E/F})\) has the values as in the statement of the lemma. If \(ρ\) is non-abelian, then as in the former case, we have \(X_7 = X_6\), and hence

\[v_2(D_{E/E_1}) = \frac{1}{3} \cdot \frac{1}{2^m} ((2^m - 2^{m_4}) \times 6 + (2^{m_4} - 2^{m_2}) \times 4 + (2^{m_2} - 1) \times 2)
= 2 - \frac{2^{m_4} + 2^{m_2} + 1}{3 \cdot 2^{m-1}}.\]

Adding the tame part, we obtain

\[v_2(D_{E/F}) = \frac{8}{3} - \frac{2^{m_4} + 2^{m_2} + 1}{3 \cdot 2^{m-1}}.\]

□

3. Proof of the Theorem

Suppose there were a continuous irreducible representation \(ρ : G_F \to \text{GL}_2(\mathbb{F}_2)\) unramified outside \(\{2, \infty\}\). Let \(K/F\) be the extension cut out by \(ρ\) and \(G = \text{Im}(ρ)\) its Galois group. As in [17], we distinguish the two cases where \(G\) is solvable and non-solvable.

First we deal with the solvable case. If \(G\) is solvable, then it sits in an exact sequence

\[1 → H → G → \mathbb{Z}/2\mathbb{Z} → 1, \quad H ⊂ \mathbb{F}_2^× × \mathbb{F}_2^×,\]
as in Theorem 1 in §22 of [16]. Hence \(K \) is an abelian extension of odd degree, unramified outside \(\{2, \infty\} \), over the quadratic extension \(K'/F \) corresponding to \(H \). By using class field theory and noticing that \(\mathbb{Q}(\sqrt{3}) \) has narrow class number 2 (resp. \(\mathbb{Q}(\sqrt{-5}) \) has class number 2), we can show that, for each \(F = \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{5}) \) (resp. \(F = \mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2}), \mathbb{Q}(\sqrt{-3}), \mathbb{Q}(\sqrt{-5}) \)), there are 7 possibilities (resp. 3 possibilities) for such \(K' \). By examining Jones’ tables [6], we find them as follows:

If \(F = \mathbb{Q}(\sqrt{2}) \), then
\[
K' = \mathbb{Q}(\sqrt{\pm\sqrt{2}}), \quad \mathbb{Q}(\sqrt{1 \pm \sqrt{2}}), \quad \mathbb{Q}(\sqrt{3}, \sqrt{-1}), \quad \mathbb{Q}(\sqrt{2}, \sqrt{-1}), \quad \mathbb{Q}(\sqrt{2 + \sqrt{2}}), \quad \mathbb{Q}(\sqrt{2 + \sqrt{3}});
\]
If \(F = \mathbb{Q}(\sqrt{3}) \), then
\[
K' = \mathbb{Q}(\sqrt{1 \pm \sqrt{3}}), \quad \mathbb{Q}(\sqrt{-1 \pm \sqrt{3}}), \quad \mathbb{Q}(\sqrt{3}, \sqrt{-1}), \quad \mathbb{Q}(\sqrt{3}, \sqrt{-2}), \quad \mathbb{Q}(\sqrt{3}, \sqrt{2});
\]
If \(F = \mathbb{Q}(\sqrt{5}) \), then
\[
K' = \mathbb{Q}(\sqrt{(1 \pm \sqrt{5})/2}), \quad \mathbb{Q}(\sqrt{-1 \pm \sqrt{5}}), \quad \mathbb{Q}(\sqrt{5}, \sqrt{-1}), \quad \mathbb{Q}(\sqrt{5}, \sqrt{2}), \quad \mathbb{Q}(\sqrt{5}, \sqrt{-2});
\]
If \(F = \mathbb{Q}(\sqrt{-1}) \), then
\[
K' = \mathbb{Q}(\sqrt{-1}, \sqrt{2}), \quad \mathbb{Q}(\sqrt{1 \pm \sqrt{-1}});\]
If \(F = \mathbb{Q}(\sqrt{-2}) \), then
\[
K' = \mathbb{Q}(\sqrt{-2}, \sqrt{-1}), \quad \mathbb{Q}(\sqrt{\pm \sqrt{-2}});
\]
If \(F = \mathbb{Q}(\sqrt{-3}) \), then
\[
K' = \mathbb{Q}(\sqrt{-3}, \sqrt{-1}), \quad \mathbb{Q}(\sqrt{-3}, \sqrt{2}), \quad \mathbb{Q}(\sqrt{-3}, \sqrt{-2});
\]
If \(F = \mathbb{Q}(\sqrt{-5}) \), then
\[
K' = \mathbb{Q}(\sqrt{-5}, \sqrt{-1}), \quad \mathbb{Q}(\sqrt{-5}, \sqrt{2}), \quad \mathbb{Q}(\sqrt{-5}, \sqrt{-2}).
\]

All these \(K' \) have class number either 1 or 2. Let \(\mathcal{O}_{K',2} = \mathcal{O}_{K'} \otimes_{\mathbb{Z}} \mathbb{Z}_2 \) denote the 2-adic completion of the integer ring \(\mathcal{O}_{K'} \) of \(K' \). Then its multiplicative group \(\mathcal{O}_{K',2}^\times \) is isomorphic to the direct-product of \(\mathbb{Z}_2^2 \) and a cyclic group of order dividing 12 (A non-trivial 3-torsion subgroup appears only if \(K' \) contains \(\mathbb{Q}(\sqrt{-3}) \) or \(\mathbb{Q}(\sqrt{5}) \)).

Thus there can exist an abelian extension \(K/K' \) of odd degree at most 3. But in each case, the 3-torsion subgroup of \(\mathcal{O}_{K',2}^\times \) is killed (when the reciprocity map is applied) by the global unit \(\zeta_3 = (-1 + \sqrt{-3})/2 \) or \(\zeta_5^2 = (3 + \sqrt{5})/2 \) (N.B. The latter is totally positive). Thus there is no abelian extension \(K/K' \) of odd degree unramified outside \(\{2, \infty\} \).

Next we prove the non-solvable case. This is done by the comparison of the Tate and Odlyzko bounds for discriminants. We denote by \(d_{K/F} \) the discriminant of \(K/F \) and \(d_K^{1/n} = |d_{K/Q}|^{1/n} \) the root discriminant of \(K \), where \(n = [K : Q] \). By the Odlyzko bound [9], we have

\[
d_K^{1/n} > \begin{cases}
17.020 & \text{if } n \geq 120, \\
20.895 & \text{if } n \geq 1000.
\end{cases}
\]
If $G = \text{Gal}(K/F)$ is non-solvable, then $n = 2|G| \geq 120$. On the other hand, by Lemmas 2 and 3, we have

$$d_{K/n}^1 \leq \begin{cases}
2\sqrt{2} \cdot 2^2 < 11.314 & \text{if } F = \mathbb{Q}(\sqrt{2}), \\
2\sqrt{3} \cdot 2^2 < 13.857 & \text{if } F = \mathbb{Q}(\sqrt{3}), \\
\sqrt{5} \cdot 2^{35/12} < 16.885 & \text{if } F = \mathbb{Q}(\sqrt{5}), \\
2 \cdot 2^2 = 8 & \text{if } F = \mathbb{Q}(\sqrt{-1}), \\
2\sqrt{2} \cdot 2^2 < 11.314 & \text{if } F = \mathbb{Q}(\sqrt{-2}), \\
\sqrt{3} \cdot 2^{35/12} < 13.079 & \text{if } F = \mathbb{Q}(\sqrt{-3}), \\
2\sqrt{5} \cdot 2^2 < 17.889 & \text{if } F = \mathbb{Q}(\sqrt{-5}).
\end{cases}$$

Thus we have a contradiction in all cases but $F = \mathbb{Q}(\sqrt{-5})$. To deal with the last case, let 2^m be the wild ramification index of K/F at 2. Then the 2-Sylow subgroup of G has order $\geq m$. If $m \leq 2$, then by Lemma 2 applied to a 2-adic completion of K/F, we have $v_2(D_{K/F}) \leq 7/4$, and hence

$$d_{K/n}^1 \leq 2\sqrt{5} \cdot 2^{7/4} < 15.043,$$

which contradicts the Odlyzko bound. If $m \geq 3$, then by §§251–253 of [4], the image of G in $\text{PGL}_2(\mathbb{F}_2)$ contains a conjugate of $\text{PSL}_2(\mathbb{F}_8)$, which has order 504. Hence the Odlyzko bound applies with $n = 2|G| > 1000$, whence a contradiction in the remaining case as well.

\[\square\]

References

Department of Mathematics, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
E-mail address: hsmoon@knu.ac.kr

Graduate School of Mathematics, Kyushu University 33, Fukuoka 812-8581, Japan
E-mail address: taguchi@math.kyushu-u.ac.jp