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            '                                                '         on the Genetic Programming and the
                      Importance Sampling
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1 Introduction
   With today's fast growth ofthe Internet service, networks monitoring and inference need to

deal with a large number of networks performance parameters, such as individual link loss rates

and packet delays. Since the direct measurement of networks traMc is partly possible due to the

collaboration of individual router and servers, the estimation of parameters can only be based

on measurements made at a limited subset of computers. The term networks tomography or

networks delay tomography is originated to illustrate the similarity between networks inference

problems and medical tomography [1]-[7]. The networks delay tomography is defined as a method

to estimate the networks performance especially on the internal nodes, which gives rise to inverse

problems.

  This paper deals with the improved estimation of tail distribution of intermediate link delays

by using the networks tomography based on the Genetic Programming (GP) and the Importance

Sampling (IS) [5]-[7]. Existing methods for solving inverse problems are proposed to cut the

computational complexity by modifying the original likelihood maximization problems to Pseudo

Likelihood Estimation (PLE) problems [1]-[4]. However, these estimation methods are usually

focusing on the cases with fixed topology of networks, and are not applicable to networks where

the topologies are unknown, for example, due to the dynamic routing and adopting several

platforms whose internal structure is not disclosed.

  In our previous works, we use the GP to estimate the networks topology which is assumed to

be unknown simultaneously by emp}oying the PLE to estimate link delay distribution [5]-[17].

The GP method is combined with the PLE method proposed by Liang and Yu which forms

simple subproblems and ignores the dependence among the subproblems by keeping the balance

between the computational complexity and the statistical efficiency for the parameter estimation

[4] [5]-[17] In our paper, the GP method is applied to improve the estimation of networks structure

[5]-[7]. Since the networks having single root'node and several internal nodes and end receivers
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can be regarded as a tree structure, it is possible to express the structure as an arithmetic

expression where the operators correspond to internal nodes and the operands correspond to

end receivers (these expressions are called individuals). Then, the GP method is applied to

improve the estimation of networks topology by using the genetic operation on individuals. If

the estimation ofthe networks topology and the link delay distribution are close to true values,

then the fitness ofthe underlying individual will be very large.

  However, the most meaningful analysis of link delay depends on the extreme values of delay

distributions rather than whole functional form, which affects direct the packet losses in networks.

Then we use the IS method to exploit effectively the data of broadcasting packets by using the

transformation of distribution function so that the extreme shape (called tail) ofthe distribution

can be figured out more precisely [21]-[23]. The IS method is widely used to estimate parameters

in systems, such as the delay distribution in networks as well as fractal time series and surfaces.

  We show examples with simulated data to illustrate the estimated tail delay distribution in

intermediate links of networks. It is seen through simulation studies, the IS method remarkably

improves the estimation oftail distribution in delay tomography compared to conventional Monte

Carlo simulations.

  In Section 2, we show the problem description. In section 3, we show the estimation of networks

topology based on the GP method, and in Section, 4 we give the IS method for improving delay

estimation. In Section 5, we show the application ofthe paper to artificially generated networks

traMcs.

2 Network Tomography and Estimation Problems in Net-
works

2.1

(a collection

path, w

exchanged by sending packets along a path from a source node to destination nodes.

  In conventional works, it is assumed that the components such as characteristics of nodes and

the networks topology affecting routing schemes are known [1]-[4]. However, in the paper, we

assume that inside structures ofthe networks are unknown [5]-[7]. More precisely, each packet is

sent from a single root node, and the delay time of packets spent between the transmission from

the root node and thearrival at the terminal node (end receivers) is observed. In other words,

under the multicast transmission scheme, the internal delay of probe packets exhausted within

the end-to-end transmissions in networks is observed.

  Even though the unknown structures (topologies) for nodes included in networks are assumed

to be estimated by our method, we also assume that the kind of packet is restricted to one, and

  Link delay estimation and network tomography

We assume'under a general network topology that a node represents a computer or a subnet

        of computers). A connection between any two nodes in the networks is called a

   hich may consist of several links. A packet is a unit of data bits, and the information is
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we do not introduce any priority among packets.

   Generally, the connections among nodes are defined by using the routing table (scheme)

includingjoins and splits of input nodes as well as a simple tandem connection of nodes. But we

restrict ourselves to topologies of tree structures where the connection of nodes is represented by

a hierarchical tree starting from a single root node and nodes are connected by branching to the

terminal nodes. Then, we exclude the networks where several links are branched from an internal

node and then are connected again to another destination nodes just by jumping the hierarchy

of topology in tree structures. However, it is not difficult to extend the standard topology of

networks treated in the paper to these special cases.

  By considering the tree structure, end receivers are seemed to correspond to terminals such

as personal computers, and then internal nodes of trees are seemed to correspond to switching

facilities such as routers and hubs. In basic models, we assume that a node is composed of one

input link and two output links. But the model is easily extended for cases of nodes having more

than three output links by introducing dummy nodes with zero transmission delay.

  Fig.1 shows an example of networks topology. In the figure, the symbol O corresponds to the

root node from where packets are sent, and the symbol ni stands for the end receivers. The two

symbols A and B represent the internal nodes having two output links.

  Let X = (xi,x2,...,xJ)' be a J-dimensional random vector, which reflects the networks

dynamics such as link delays. Let Y == (yi,y2,...,yi)' be an I-dimensional measurement vector

at end receivers. For example, in Fig.1, the unknown vector (variable) X is needed to be estimated

whose elements represent the delay time on each link, and the variable Y stand for the observation

whose elements are representing accumulated delay time observed at end receivers ni,n2,n3 for

multicast packets sent from the root node. The goal of the networks tomography is to estimate

X from the observed Y. The mathematical model in the problem is written as

Y -= AX (i)

where A is a routing matrix, determined by the networks topology and the routing table at each

router in the networks. In conventional works the matrix A is assumed to be fixed under the

fixed routing scheme and ignoring the possibility of dynamic routing. However, in our paper,

we assume that the matrix A is unknown and must be estimated by the GP method. But, for

simplicity, we also assume for a while that the element of the matrix A is O or 1 which means a

deterministic routing is selected at the time of observation.

  For example, the equation (1) for the networks in Fig.1 is represented as

2:

;#:
3nx
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pa 1: Example of networks structure

                                 (2)

  where yni,yn2,yn3 are accumulated delay time at terminal nodes ni,n2,n3, respectively, and

xA,xB,xni,xn2,xn3 represent the delay time at nodes A,B,ni,n2,n3 or at links connected to

these nodes.

  The estimation of X is an inverse problem. In a general networks tomography scenario, A is not

a full-rank square matrix, where I << J, hence some constraints have to be introduced to ensure

the identifiability of the model. Thus, we assume that all components of X are independent of

each other, even though such an assumption does not hold strictly due to the temporal and spatial

correlation among the network traffics. Therefore, we give a good first-step approximation by

solving the problem. Under these assumptions we show the procedure to estimate X using Y.

We assume each component of X denoted as xo• under a probability distribution.

  Throughout the paper, we assume that the vector Y is observed at T consecutive time period

of intervals, and X is estimated as corresponding unobserved networks performance quantity.

2.2 Subproblems with Pseudo Likelihood Estimation

   For the problem of multicast delay inference through end-to-end traffic, the maximum like-

lihood method is usually infeasible because its likelihood function involves finding all possible

internal delay vectors X, given an observed delay vector Y. Thus, the computational complexity

of the problem grows at a nonpolynomial rate.

  We can, however, apply the PLE approach to this problem, which is proposed by Liang and

Yu [4]. In the PLE, the whole problem is divided into several subproblems, and the likelihood

function is represented by the product of each likelihood function of subproblems. In this case,

each row of the routing table matrix A corresponds to an end receiver in the multicast tree, and

subproblems are formed by choosing two end receivers each time.

  An example is depicted in Fig.2. Flrrom arbitrary multicast tree as illustrated in Fig 2 (a),

we select an internal node at random, and then define only two end receivers connected to the

internal node regarding them as the only attainable end receivers in the networks and neglecting

other end receivers in this subproblem. The subnetworks obtained by generating subproblem
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pa 2: Example for obtaining subnetworks (a)original multicast tree, (b) selection of two end

receivers, for PLE decomposition

is shown in Fig.2(b) in which each link delay is estimated based on the accumulated delay at

terminal nodes. After calculating the log likelihood for these subnetworks, then we have com-

prehensive log likelihood for the while networks.

 Subproblems are formed by selecting some pairs of rows from the routing matrix A. Namely,

we select all possible pairs, but a subset can bejudiciously chosen to reduce the computation.

  Let S denote the set of subproblems by selecting all possible pairs of rows from the routing

matrix A. Then, for each subproblem

                                YS=ASXS,sES (3)
where XS is the vector of networks dynamics involved in the subproblem, and AS is the corre-

sponding routing matrix, and YS is the corresponding observation of s E S.

  A discretizaton scheme is imposed on link-level delay in such a way that xj• takes finite possible

values

                             x,•E(O,q,2q,...,mq,oo) (4)
where q is the bin width and m is a constant. Assume q is known so that each x2• is a independent

multinominal variables with eo- = (ejo,.0ji,•••7ej'm,ejcx))•

                               eji=Prob(x,•=lq) (5)
If the delay is infinite, it implies that the packet is lost during the transmission.

2.3 PLEalgorithm

   Maximizing the pseudo likelihood function in PLE leads to the ordinary maximizing proce--

dure, but often the pseudo likelihood function cannot be solved analytically. Hence, a numerical

optimization algorithm has to be adopted. The EM (Expectation Maximization) algorithm is

well known method for maximizing the likelihood function numerically. We can use an pseudo-

EM (an EM like algorithm) to maximize the pseudo likelihood function. In the EM algorithm,
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we do not optimize all of the parameters at the same time. At first, we optimize by parameters

in group A by assuming that another group B of parameters are fixed so as to maximize the like-

Iihood function. Then, at the next time we optimize by parameters in the group B by assuming

that parameters in the group A are fixed.

  For a given subproblem s, each component of XS is an independent multi-nominal random

variable, so that the log-likelihood function given the complete data for time t denoted as Xi

(Xi,X2S,...,X8) is obtained. For convenience, we denote j'th element of Xi as x2i
  Let e;bl) be the parameter estimate obtained in the kth step of pseudo-EM for 1'th element

x;o• where eo•i = P(x&• = lq). Then, the Expectation Maximization algorithm is given as follows.

  (Initial values)

  The initial values ofthe pseudo-EM algorithm can be chosen arbitrarily. A uniform distribu-
tion, i.e., e;?) = 1/(m + 2) for all possible 2' and l is used as the starting point for the simulation

study.

   (E-step) Calculate next values

                                         T
                          ho'i =ÅíEes(le)(2 1{xtS,• =lqlYtS }) (6)
                               sES t==1
where 1{} is a function taking the value 1 (O) if the condition in the parenthesis is satisfied

(not satisfied). The term hj•i means the expectation ofthe number of packets whose delay time

on link 2' js equal to lq. The calculation is carried out as is shown on the right hand side of

equation. Under the given observation YtS, we sum up the expected number of packets satisfying

the condition xtS o• == lq for all of the subproblems s, which is obtained by the forward-backward

algorithm [1]-[4]. In the procedure, we assume that the delay distribution on each node expect

the node 2' i's fixed to the previous value at the time step k.

  (M-step) Update e(k) as follows ,
                        e;'ts'i) = 2.:"Oii hj.''R= [O' 1' '"' M' OO] (7)

We iterate above two steps (E-step and M-step) until we can expect no further improvement of

parameter estimations.

   Consistency and asymptotic normality of the PLE method base on solving subproblems is

shown by Liang and Yu under very general conditions [4]. Details are omitted here.

3 Network Topology Estimation by the GP

3.1 BasicsoftheGP
    In the basic method of the networks tomography, we assume that the networks topology is

known and fixed [1]-[4]. Then, we extend the model to the case where neigther the networks

topology nor the delay distribution is known[5][6]. In our method, the networks topology is

                                        -- 62 -
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represented as a tree structure, and is regarded as an individual to be improved by the genetic

operations [8]-[20].

  For simplicity, at first we explain the GP procedure for the approximation of function in

time series prediction. Any S-expression can be graphically depicted as a rooted point-labeled

tree with ordered branches. The external points(leaves) ofthe tree is labeled with terminals, i.e.,

constants and variables x(t- 1),x(t- 2). The root and internal nodes ofthe tree are labeled with

the primitive function such as binomial operation +, -, Å~,/. We employ the prefix representation

to treat the tree. For example, for the function x(t) = [6.43 Å~ x(t - 1) - (x - 2)] Å~ [x(t --- 3) - 3.54]

generating the time series, we have the next prefix representation.

Å~ - 6.43x(t - 1)x(t - 2) - x(t - 3)3.54 (8)

The equation represented by using the prefix representation is called as an individual. The

individual is interpreted based upon the stack operation. Since we know the values x(t - 1),x(t -

2),x(t - 3), we obtain the prediction for the individual te(t) by substituting these values in the

prefix representation. The difference between the observed value x(t) and the prediction te(t)

reveals as the ability of the individual, then we define the fitness ofthe individual as the inverse

of the prediction error.

  StackCount
   For checking the validity of underlying parse tree, the so-called stack count (denoted as

StackCozent in the paper) is usefu1 [8]-[20]. The StaekCo2Lnt is the number of end-nodes that

places on minus the number of intermediate nodes that takes off from t.he stack. At first we

set zero to StackCoiLnrt. By scanning the prefix representation from left to right, we add 1 to

StackCoiLnt if we meet operands, otherwise (meet operators) subtract 1 from StackCoiLnt. The

cumulative StackCount never becomes positive until we reach the end at which point the overall

sum still needs to be 1.

  crossover operation
  The basic rule is that any two loci on the two parents genomes can serve as crossover points

as long as the ongoing StackCount just before those points is the same. At first, we select a

random location LA on the individual A, and then calculate StackCozLnt denoted as IV. to the

location LA (crosspoint). Then, we select the location LB on the individual B which is a pair of

crossover operation for individual A in such a way that the StaekCo2Lnt for B until the Iocation

LB is equal to N.. Generally, we have several candidates for the location LB, and then select

one ofthem at random. The crossover operation creates new offsprings by exchanging sub-trees

between two parents. We generate two individual by combining former part of individual A

(B) by latter part of individual B (A). By applying the genetic operations for two individuals

selected in proportion to the fitness, we have offsprings with better fitness which are used to

replace individuals with relatively small fitness.

  mutation operation
  The goal of the mutation operation is the reintroduction of some diversity in a population.
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Select at random a locus in a parse tree to which the mutation is applied, we replace it by another

value corresponding to operators and operands.

3.2 ApplyingGPtotopologyestimation
    The prefix representation for networks topology is obtained by changing the definition in

arithmetic expressions by regarding the operands as end receivers, and operators as the internal

nodes in the networks. For example, for the networks in Fig.1, we have the prefix representation

as

                                   AB ni n2 n3 (9)
The StaekCoiLnt used for arithmetic expressions is easily extended for representing networks

topologies. At first we set zero to StackCoiLnrt. By scanning the prefix representation from left

to right, we add 1 to StackCozLnt if we meet symbols denoting end receivers, otherwise (meet

symbols for internal nodes) subtract 1 from StaekCount.

   We can apply the same GP operations (crossover and mutation operations) as arithmetic

expressions for the individuals representing networks topologies by selecting crosspoints LA and

LB for individuals A and B by considering appropriate StackCount numbers, and details are

omitted here. Examples of crossover operation and mutation operation are shown in Fig.3 and

Fig.4.

  Since each individual in the GP corresponds to a realization of networks topology, then by

applying the genetic operation, we can have more appropriate estimation of networks structure

depending on the fitness of individuals. The fitness of individuals is defined by using the calcula-

tion of delay distribution at the end receivers based on the PLE. Once the networks topology is

determined by interpreting the individual, the delay distribution on the end-nodes is calculated

by the PLE. The fitness of an individual is defined as the inverse of estimation error for the delay
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parent C

   partial tree
generated at random

   ,
offspring C'

eq 4: Example of mutation

distribution on end receivers.

  delay distributions on end receivers
  At first, we assume that we have a given delay distribution on the end receivers (denoted

as dT) as observations. These observations are able to be given as a set of numerical values.

But in cases we postulate functional forms of delay distribution on intemal nodes, we use the

convolution to get the delay distributions on end receivers. Theoretically, we can calculate these

values by using the convolution of delay distribution of each link which is placed on the rooting

path beginning from the root node to the end receivers.

  GP algorithm
  We iteratively perform the following steps until the termination criterion has been satisfied.

  (Step 1) generate initial population of individuals

  Generate an initial population of random composition of possible internal nodes (operators)

and end receivers(operands) for the problem at hand. The random tree must be syntactically

correct program in the sense that the value of StackCozent is 1.

  (Step 2) Calculation of fitness of individuals

  Execute the evaluation for each individual i (estimation of delay distribution at end receivers)

in population by applying the PLE. By assuming the networks topology is identical to the tree

given by the underlying individual i, we calculate link delay distribution (probabilistic distribu-

tion) on each link based on the PLE. Then, we compare the calculation (estimation) of delay

distribution on end receivers (denoted as ds) obtained by the GP and PLE methods with true

value dT. Then we define the fitness of individual i as the inverse of the square error between

dT and ds where dT is given observation of delay distribution at end receivers. Even though

the estimation error between dT and ds is affected by the estimation error caused from the PLE

itself, but it is ensured that the error comes from the irrelevant identification oftopology heavily
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affects the estimation error. Then, we sort individuals according to the fitness Si.

   (Step 3) crossover operations

  Select a pair of individuals chosen with a probability pi based on the fitness. The probability

pi is defined for ith individual as follows.

                                           N
                           pi=(Si-Smin)/2(Si-Smin) (10)

where S.i. is the minimum value of Si, and N is the population size. Then, create new individ-

uals (offsprings) from the selected pair by genetically recombining randomly chosen parts of two

existing individuals using the crossover operation applied at a randomly chosen crossover point

while keeping the restriction for the StackeoiLnt for both individuals. Then, we gather these

new offsprings in the pool P-B which is different from the initial pool P-A. Repeat the procedure

several times, and we gather suMcient number of new offsprings necessary for the replacement

of individuals. Then, we replace individuals in the pool P-A having lower fitness by individuals

in the pool P-B.

   (Step 4) mutation operations

   To reintroduction some diversity in an population, we apply the mutation operation with

a certain probability to an individual at random. value (a intermediate node (operator) or a

end-node).

   (Step 5) iterations

   If the result designation is obtained by the GP ( the maximum value of the fitness become

larger than the prescribed value), then terminate the algorithm, otherwise go to Step 2. The

procedure iterated from Step 2 through 4 is called a generation of the GP.

4 Importance Sampling for Improved Tail Estimation

4.1 IS forrare events

    An important concept for quantifying networks performance is the loss in packets or large

delay during a specified period duration of service [21]-[23]. For a given probability p, the tail

distribution xp is defined to be the (1 - p) th quantile ofthe distribution of link delay x.

                                   P(x>x,) ==p (11)
The computational cost required to obtain accurate Monte Carlo estimates of tail distribution is

often enormous, since a large number of runs (packet delay evaluations) are required to obtain

accurate estimates ofthe loss the distribution in the region of interest. Then we apply the IS by

changing the measure for sampling (the change of delay distribution).

   The IS is a particularly appropriate technique for rare event simulations. The standard

simulation is inaccurate for estimating P(x > rp), while for large xp few samples are obtained in

the important region where x [>t xp. Effective IS should generate a disproportionally large number
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of samples in this region. We use the approximation xp f>t ao + Q and select an IS technique that

generates large values of ao + Q with high probability. In fact, under the condition, the mean of

ao + Q equals xp. For IS, we consider a change of measure in which the mean of x is changed

from O to pa. Then, we have P(x > xp) = E[I(z > a7p)l(z) where E(.) means the expectation

under the IS distribution, and l(z) is the likelihood ratio with new random variable z,

  Under packet loss estimation, we denote

                          pt=P(x>x,)=f..OOf(x)dx . (12)

where the function f(x) is the probability density function of packet delay x on a certain link

using the PLE and GP methods in previous sections. Then, we introduce a distribution function

to generate twisted random variable z as follows:

                             pt-f..OO f*(z) ffi)) dz (i3)

where the function f*(x) is the probability density function (called Importance Ifunction) for the

twisted variable z having higher probability in the region close to xp and greater than xp,

4.2 Determininglmportancefunctions

   Then, we define the Importance Function f*(x) which is used as an alternate density function

or a biasing density function. Biasing by exponential twisting is most easily explained by means

of derivation of statistical upper bounds on tail prbbability, and is widely used in various areas

such as information theory [23].

  The basic method of the exponential twisting is summarized as follows:

  (1) function f*(x)

  The function f*(v) is defined as

                              f"(x)=eSX-pa(S)f(x) (14)
where the function pa(s) = logM(s) is obtained from the moment generating function M(s) ==

E{exp(sX)} of f(x).

  (2) optimal value of s

  If the functional form of f(x) is given, then the optimal value of s is determined so that the

two quantities are to be minimized.

                                                                '                          I(s) .. f, OO e-(sx-pa(s))f(x)dx (ls)

                               I-(s)=e-2(St-pa(S)) (16)
If we choose the function f(x), an exponential density function f(x) = cueaX, then we have

optimal value of s as st
                                          1                                  st=cM -i (17)
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For example, if we choose as or == 1 and pt = 10-6, then we have t = 13.81551.

   (3) approximation of density function

  We assume that the estimated delay distribution g(x) for delay time x on a link obtained by

the proposed method based on the GP and PLE is numerically approximated by the exponential

distribution function f(x) = ore-crX. Since the parameters ej•t = Prob(xo• -- lq) in equation

(5) is obtained for each bin as a discretized version of the function of g(x), then we adopt the

continuous function f(x) = ae-aX to approximate g(x). We simply use the steepest descent

algorithm to minimize the mean square error between g(x) and f(x) so that the parameter or is

estimated.

  (4) giving the gain of IS

  We also denote the gain ofIS as follows:

                                       pt(1 - pt)
                                                     2 (18)                            T=                                E*{12(X 2 t)l2(X)} - pt

It means the ratio of the sample sizes of standard Monte Carlo method and importance sampling

method under the circumstance with the same estimator variances.

  We can recognize the ability ofthe IS by a simple example. For a given exponential distribution

f(x) with cy = 3, we generate M = 500000 samples along the distribution. Then, we calculate the

probability ofrare event pt = P(x > xp) = 10m6. We have the estimation for expected value ofpt

(E{pt}) and its variances (V{pt}) as (E{pt} =: O.90001E-06,V{pt} == 1.46316E-'2. 0n the other

hand, we obtain estimation result by using the IS (E{pt} = 1.00180E-06,V{pt} = 9.92378E"i7)

with the sample size M : 100000. At the same time, we have the value T for the example as

T = 54075.94. The fact shows the ability of IS to increase the estimation result.

5 Applications

5.1 Estimation for artificially generated delay

    In order to assess the performance of the PLE combined with the GP procedure for esti-

mating the networks topology, model simulations are carried out on a four-level multi-cast tree

depicted in Fig.5.We assume that the networks topology and the delay distributions of all inter-

nal nodes are given. Then, the estimation method of our paper is applied to obtain the networks

topology and the delay distribution on the internal nodes. If the result of estimation of networks

topology is the same as the original (given) structure and the estimation of delay distribution is

close to the prescribed distribution, the method of the paper is proved to be appropriate for the

delay tomography.

  Followings are assumed to the networks topology and the delay distribution on the internal

nodes. In Fig.4 the number O means the root node from which the packets are sent to the

networks. The numbers from 1 through 6 mean the internal nodes, and the numbers from 7

through 13 are the end receivers where the accumulated delay of the packet are observed. It
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is assumed that the delay for packet are incurred in communication links between two adjacent

nodes. For simplicity, the identieal number of link is the same as the number of corresponding

node connected to the lower node in the networks. The numbers written in parentheses in Fig.5

mean the average delay value of delay distribution on these links.

  Followings are used for the simulation study.

  Number of individuals:20

  Delay distribution on links: exponential distribution having Mean value between 3 and 8.

  Bin characteristics:q = 1,m = 20

  Number of multicast delay measurement:5000 i.i.d data

  After composing the tree structure of the networks based on an individual, we calculate the

observation Y on end receivers by accumulating the link delay along the paths from the root

node O to end receivers 7,8,...,13. Since we have seven end nodes, then we have seven dimen-

sional with 5000 samples each. For the generation of packet delay, we generate random numbers

corresponding to the delay distributions on links O, 1, ..., 13 as identically independent distributed

numbers. Then, we sum up these delays along the path of packet, so that we can get the delay

time on end nodes.

   We apply our proposed method to estimate the networks topology and the distributional

parameter to the networks in Fig.5. As a result of simulation, we get the same tree structure

as the estimation ofthe GP procedure after seven generations of GP (the diagram depicting the

convergence is ornitted here). Fig.6 shows an example ofestimated results on the link 7 compared

with the original (given) distribution. Fig.7 shows the estimation of accumulated delay distribu-

tion on link 11 compared with the original (given) distribution. In these figures, the solid lines

correspond to the original distribution, and the dashed lines mean the estimated distributions.

Obviously, the results show that our suggested method works well. The result shows the GP

procedure combined with the PLE provides us almost the same estimation for delay distribution.

Furthermore, the networks topology is also estimated and identified by the GP procedure given

in the paper.

5.2 ImprovedestimationbyIS

    Now, we examine the estimation of packet loss probability obtained by the IS method pro-

posed in the paper by comparing the result obtained sole}y from the PLE outpints. Since the

delay distribution on each link of artificially generated networks is known, it is easy to see the

estimation error by two methods.

  For simplicity, we compare the estimated probability of packet loss with true value. Since we

know the original delay distribution of each link, we can obtain the marginal delay time xp for

which the delay time larger than xp has the probability pt == 10-6 such as P(x ) xp) = pt.

  We prepare following two type of simulation studies for the same networks configuration.
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pa 6: Example of estimation of delay distribution (link 7)

  Case GP-PLE:
  We use only the GP and PLE for the estimation of topology and delay distribution as a basic

method, and no improvement using the IS is applied.

  Case GP-PLE-IS:
  We use the GP and PLE for the estimation of topology and delay distribution, and then apply

the IS to improve the estimation of tail distribution.

   In the estimation of tail distribution, we use 10000 samples of random numbers generated

after identifying the distribution function g(x) on each link. Table 1 shows examples of the ex-

pectation of packet loss probability pt for which the quantile xp of the distribution of link delay

is realized, namely, P(x > xp) = pt. In the table, we also show the variance of pt. Then, the

estimation ofpt obtained from tail delay distribution compared with true distribution for several

arbitrarily selected links. At the same time, to examine the stability of estimation, Table 2 shows

the gain T defined by equation (18). The Table 2 shows the ratio ofthe number of samples used

for the GP-PLE scheme necessary to get the same estimation as the GP-PLE-IS scheme. If the
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E] 7: Example of estimation of accumulated delay distribution (link 11)

gains are large, we can attain the computational speed-up by the IS.

  Seen from Table 1 and 2, the estimated pts obtained by the IS after applying GP and PLE

are much more accurate than those obtained by standard Monte Carlo method after applying

GP and PLE. It is also seen from the tables that large reductions of samples are realized for all

the intermediate nodes by using the IS.

iilli 1: Estimates of E{pt} for tail distributions of several link delays(GP-PLE-IS)

links E{pt}(GP-PLE-IS) Varlot]

.No.2 1.004680E-06 6.029493E-16

No.4 9.828698E-07 1.173991E-15

No.6 9.568224E-07 5.974170E-16

No.7 9.967802E-07 1.72109E-15

No.8 9.920351E-07 8,46020E-16

No.11 9.998340E-07 8.93730E-16

No.13 9.987617E-07 7.206100E-16

5.3 Othernetworksanddelaydistribution

   We apply the estimation method proposed in the paper to another networks configuration

and delay distribution to asses the applicability ofthe method. We generate 100 different net-

works topologies'and related delay distributions for each link having exponential distribution

with mean value between 1.0 and 10.0.' In these networks, we restricted ourselves to the cases

where the maximum number of links on the paths from the root node to the end nodes is less

than five. The restriction is substantial, otherwise the computation time of estimation grows
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2Il 2: Values of Ts for tail distributions of several link delays

links

No.2

No.4

No.6

No.7

No.8

No.11

No.13

E{T}
53955

55580

58832

54855

55100

54176

54375

very rapidly.

  Among 100 simulated networks, we have 97 truly estimated topologies for the networks ob-

tained by the GP method , and in 3 cases we fail to identify the topologies. Table 3 and Table

4 summarize the result of estimation of packet loss (obtained by GP-PLE-IS) compared with

the basic estimation (GP-PLE). In the following tables, the symbols of Li and LT stand for the

intermediate links and the terminal links, respectively. In Table 3, we show simply the mean

value of estimation of packet loss probabilities pt for link delay. In the table, we also show the

variance of estimation ofpt for each Iinks in 97 cases. In Table 4, the gain E{T} given in equation

(18) is shown as a mean value.

  As is seen from the result, the estimation of tail distribution of link delay is sufliciently

improved by using the IS compared to basic estimation with only the GP and PLE.

iil 3: Estimates of mean value of E{pt}(GP-PLE-IS)

links E{pt} Varlpt]

LI

LT
9.994234E-07

9.985642E-07

1.213233E-16

5.768534E-17

iK 4: Values of mean T

links mean[E{T}]

LI

LT
56545

54345
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5.4 Erlangtypeofdelaydistribution

    For the study of dependency of type of probability distribution of link delays, we use the same

100 examples oftree structure used in previous section. By keeping the same networks topologies

as previous 100 examples, then we change the delay distribution on links from exponential

distribution with mean values ranging from 1 to 10 to the Erlang distribution E(k) with identical

phase k but having the same mean values as the original exponential distribution to introduce

more general types of delay distributions. Moreover, we change the phase of Erlang distribution

simultaneously from k = 2 to k = 7 on every links.

  Then, we must slightly change the definition ofImportance Functions. The moment generating

function M(s) used for calculating pa(s) -- logM(s) in equation (14) is gives as

                                            cyk
                                  M(s) -                                                                               (l9)
                                         (dv - s)k

Then, we estimate optimal s numerically for the IS method. At the same time, since the Erlang

distribution has two parameters the mean value and the phase k, we must also used the steepest

descent approximatiori to get these parameters.

  The conditions for the simulation studies are the same as Previous sections. We are interested

in the identification of networks topologies and the mean value of estimation of tail distributidn

pt on each link.

  Among 100 simulated networks, we have 97 truly estimated topologies for the networks ob-

tained by the GP method , and in 3 cases we fail to identify the topologies. The result is the

same as examples in previous section. The fact means that the effectiveness of the GP method

is mainly depends on the networks topologies themselves, and not on the delay distributions.

  Table 5 and Table 6 summarize the result of estimation of packet loss (obtained by GP-PLE-

IS) compared with the basic estimation (GP-PLE). In Table 5, we show simply the mean value

of estimation of packet loss probabilities pt for link delay in 97 cases. In Table 6, the gain E{7}

given in equation (18) is shown as a mean value. The results in Table 5 and 6 show that the

estimation of pt will become worse if the phase k grows . However, as is seen from the result,

the estimation of tail distribution of link delay is suficiently improved by using the IS compared

to basic estimation with only the GP and PLE.

2El 5: Estimatation of mean value of E{pt} along phase k

links E{p,},k==2 k==4 k=6
LI

LT
9.96742E-07

9.98654E-07

1.00344E-08

1.00342E-08

1.00332E-08

1.00353E-08
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 iK 6: Values of mean T along phase k

links mean[E{T}],k=2 k==4 k=6
LI

LT
71720

72009

88495

87998

98969

98778

6 Conclusion
   In this paper, we proposed a method for improving the estimation of tail distribution of link

delay by using the networks tomography and the GP based on the IS method. We used the GP

to estimate the networks topology which is assumed to be unknown simultaneously by employing

the PLE for delay distribution. Each individual in the GP was the representation of networks

topology, and then assigned the fitness by calculating the link delay estimation by using the

PLE. The IS method is utilized to exploit the data for broadcasting packet by transforming the

distribution functions. The simulation studies were shown for the artificially generated data.

  The problems remain to be solved are the extension for various real world data and estimation

of density function in a functional form, and the further research will be done by the authors.

b

8-. j21f!wt

 [1] Y.Vardi,"networks tomography : Estimating source-destination traffic intensities from link

    data", J. Amer. Statist. Assoc., vol.91, pp.365-377, 1996.

 [2] M.Coates, A.Hero,R.Nowak and B.Yu, "Internet tomography", IEEE Signal Processing

    Mag., vol.19,pp.47-65, 2002.

 [3] Y.Tsang,M.Coates and R.D.Nowak, "networks delay tomography",IEEE Tlrrans.Signal Pro-

    cessing, vol.51,no.8, pp.2125-2136, 2003.

 [4] G.Liang and B.Yu,"Maximum pseudo likelihood estimation in networks tomography",IEEE

    [Erans.Signal Processing, vol.51,no.8, pp.2043-2053, 2003.

 [5] Y.Ikeda,S.Tokinaga and J.Lu " Estimation of networks configuration based on the Genetic

    Programming and delay tomography ",Technical Report of IEICE,NLP2003-292,pp.7-10,

    2003.

 [6] Y.Ikeda, S.Tokinaga and J.Lu,"Estimation of networks configuration based on the Genetic

    Programming and delay tomography", Proc. NOLTA2005,pp.399-402, 2005.

 [7] Y.Ikeda, S.Tokinaga and J.Lu,"Identification of networks configuration based on the Genetic

    Programming and delay tomography", Journal of IPSJ,vol.47,NO.SIGI,pp.13-18, 2006.

- 74 -



      Improved Estimation of Tail Distribution of Link Delays by Using Networks Tomography Based on
                     the Genetic Programming and the Importance Sampling

 [8] Y.Ikeda and S.Tokinaga,"Approximation of chaotic dynamics by using smaller number

    of data based upon the genetic programming, Tlrrans. IEICE, vol.E83-A,no.8, pp.1599-

    1607,2000.

 [9] Y.Ikeda and S.Tokinaga, " Controlling the chaotic dynamics by using approximated system

    equations obtained by the genetic programming," IEICE 'Ilrrans.Fundamentals.,vol.E84-A,

    no.9, pp.2118-2127,2001.

[10] M.Yababe and S.Tokinaga,"Applying the genetic Programming to modeling of diffusion pro-

    cesses by using the CNN and its applications to the synchronization (in Japanese) ,"IEICE

    [[hrans.Fundamentals. vol.J85-A,no.5,pp.548-559,2002.

[11] X.Chen and S.Tokinaga,"Approximation of chaotic dynamics for input pricing at service

    facilities based on the GP and the control of chaos,"IEICE [I]rans.Fundamentals, vol.E85-

    A,no.9 pp.2107-2117,2002.

[12] X.Chen and S.Tokinaga,"Synthesis of multi-agent systems based on the co-evolutionary

    genetic Programming and its applications to the analysis of artificial markets (in Japanese),"

    IEICE Tbeans.Fundamentals,vol.J86-A,vol.10,pp.1038-1048,2003.

[13] Y.Ikeda and S.Tokinaga,"Chaoticity and fractality analysis of an artificial stock market

   by the multi-agent systems based on the co-evolutionary Genetic Programming", IEICE

    Tanns.Fundamentals,vol.E87-A,no.9,pp.2387-2394, 2004.

[14] J.Lu and S.Tokinaga,"An Aggregated Approximation for modeling of time series based

    on the Genetic Programming and its application to Clustering (in Japanese), IEICE

    Trans.Fundamentals,vol.J88-A, no.7,pp.803-813,2005.

[15] J.Lu and S.Tokinaga, " Two-stage recognition method of time series based on symbolic rep-

   resentation of categories obtained by segment classification using the Genetic Programming

    and its applications to prediction (in Japanese)," IEICE 'Ilrrans.Fundamentals,vol.J88-A,

   no.11,pp.803-813,2005.

[16] S.Tokinaga,J.Lu and Y.Ikeda, " Neural networks rule extraction by using the Genetic Pro-

    gramming and its applications to explanatory classification,"IEICE 'Ibeans.Fuadamentals,

   vol.E88-A,no.10,pp.2627-2635,2005.

[17] K.Ikeda, X.Chen and S.Tokinaga, "Analysis of chaotic behavior of input pricing realized

   by the multi-agents systems based on the C-evolutionary Genetic Programming and its

    applications (in Japanese)," IEICE [I]rans.Fundamentals,vol.J89-A,no.4,pp.298-307,2006.

[18] J.R.Koza:Genetic Programming,MIT Press, 1992

[19] J.R.Koza,Genetic Programming II:Automatic Discovery of Reusable Programs,MIT Press,

    1994.

- 75 --



                       *.x t?fi iLji-4 Eff p7itt "GR"73g "m"5•6k{#?

[20] M.J.Keith and M.C.Martin,"Genetic programming in C++: Implementation issues", in

    (ed) K.E.Kinnerar,Jr.,Advance in Genetic Programming MIT Press, 1994.

[21] P.Glasserman,P.Heidelberger and P.Shahabuddin, " Variance reduction techniques for esti-

    mating Value-at-Risk," Management Science, vol.46,no.10,pp.1349-1364,2000.

[22] S.M.Kay and S.Saha,"Mean likelihood frequency estimation",IEEE Trans., Signal Process-

    ing, vol.48,no.7, pp.1937-1946,2000.

[23] S.Tokinaga and N.Takagi, "Decomposition of surface data into fractal signals based on

   mean likelihood and importance sampling and its applications to feature extraction," IEICE

   Tlrrans.Fundamentals,vol.E88-A,no.7,pp.1946-1956, 2005.

[24] R.Srinivasan,Importance Sampling,Springer, 2000.

 Kangrong Tan (Professor, Faculty of Economics, Kurume University)

 Shozo Tokinaga (Professor,Graduate School of Economics, Kyushu University)

- 76 -


