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Dynamic Asset AllOcation with Event Risks
          under Value-at-Risk Regulation

Shozo Tokinaga and Xiaorong Chen

1 Introduction

In the problem to estimate the probability corresponding to rare events we must focus on the
tail ofthe distribution functions, and sometime we are puzzled by so-called fat-tail and long-tail
distributions [1]-[14]. Fat-tail and long-tail lead us to overestimation or underestimation of rare

events, then there occurs serious accidents such as large losses and damages in financial assets
[1]-[10]. Similar problems are found in the control of network traMc [11]-[14].
                                                   f   It is assumed in a common hypothesis about the behavior of asset prices in perfect market
that the returns show the random walk or the geometric Brownian motions in the continuous
time form [21]. The model implies that asset prices are stationary and log-normally distributed,

However, a number of investigators in the field of stock and commodity prices have questioned
the accuracy of the hypothesis [15]-[20]. The assumption about the independent increments and
the stationarity have been criticized , and also from nonacademic aspects stock price patterns
and related trading rules called technical analysis have been investigating on the conditions with

presupposed departure from random price changes.
   Moreover, one of the inherent hazards of investing in financial market is the risk incurred
by the sudden large shock in security prices and volatilities. With the event-related jumps, the
investors must also consider the effects of large security prices and volatility changes in selecting

dynamic portfolio strategy. We must keep the portfolio to be optimal enough for large returns
as well as for small returns in event risks.

   In addition to dynamic portfolio selections, the impact of market risk regulation on optimal
portfolio must be taken into account to maintain and improve the safety of financial institutions
[15]-[20]. In 1996, VaR-based risk management had already emerged as common market practice.
Inthe1996Amendmentonmarketriskregulation, theBankofInternationalSettlement(BIS)
chose VaR as the regulatory reporting tool for the market risk of the banks' trading book.
   This paper deals with the implications of event-related jumps in security prices and the dy-
namic portfolio strategies [15]-[20]. At the same time, the impact of VaR-based regulation on
the dynamic portfolio is also discussed to examine the deviation from the equilibrium. Based
on the incomplete market model different form normally distributed returns, we can analyze the
role of regulation under worse market conditions. In the investment horizon, the problem of in-
tertemporal optimization problem under VaR constraints is resolved. Then, the method proposes
individuals risk management within the framework of equilibrium analysis with heterogeneous
banks.
   In the model, the security price follows jump-diffusion processes which are triggered by a
Poisson event. Because of the tractability provided by the affine structure of the model, we
can reduce the Hamilton-Jacobi-Bellman partial differential equations which are allowing us to
obtain an analytical solution. In the model, it is assumed that VaR is bounded at time t by an
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exogenous limit proportional to the current wealth directly for a given time horizon, then the
problem becomes to be tractable enough. By using the first-order approximation of the wealth
process, we find the optimal dynamic portfolio in which we switch the weight for the risky asset
depending on the boundaries of weight. As a result, the equilibrium incentive of VaR regulation
can lead banks to increase their risk exposure in high--volatility states.

   In the followings, in Section 2, we show the basics of the asset price dynamics and budget
equation. Section 3 gives modeling of impact of VaR regulation. In Section 4, we describe
examples of conventional works for the dynamic portfolio selection and VaR regulations. Section
5 shows the application for the dynamic asset allocation with event risks under VaR regulation.

2 Asset Price Dynamics and Budget equation

2.1 Processes of asset prices (without Jump processes)

At first, we describe the asset price dynamics and budget equation following the Merton's result
[18]-[20]. However, for the first step, we only explain the formalization for the cases where the

price processes include no jump processes.
   To apply the dynamic programming technique in a continuous-time model, the state variable
dynamics must be expressible as Markov stochastic processes defined over time intervals of small
length h. The two types ofthe processes are functions of Gauss-Wiener Brownian motions which
are continuous in the space variables, and the Poisson processes (the jump-diffusion processes)
which are discrete in the space variables. A particular class ofcontinuous-time Markov processes
called Ito process are defined as the solution of the stochastic differential equation.

                              ,dP =- f(P, t)dt+g(P, t)dz (1)
where P, f,g are n vectors and z(t) is an n vector of standard normal random variables. Then,
dz(t) is called a multi-dimensional Wiener process (Brownian motion).
   Throughout the paper, it is assumed that all assets are of the limited liability type, that there

exist continuously trading perfect markets with no transaction costs for all assets, and that the
prices per share Pi(t) are generated by Ito processes.

                             dPi
                                 =cyi(P, t)dt+ai(P, t)dzi (2)                             Pi
where ori is the instantaneous conditional expected percentage change in price per unit time,
and ai is the instantaneous conditional variance per unit time. In the particular case where

the geometric Brownian motion hypothesis is assumed to hold for asset prices, or and a will•be
constants.
   To derive the correct budget equation, it is necessary to examine the discrete-time formulation
of the model and then to take limits carefu11y to obtain the continuous time form. Consider a
period model with periods of length h, where all income is generated by the capital gains, and
wealth, I2[i(t) and Pi(t) are known at the beginning of period t. Let the decision variables be

indexed such that the indices coincide with the period in which the decision are implemented.
Namely, let
IVi (t):number of shares of asset i purchased during period between t and t + h(called period t)

C(t):amount of consumption per unit time during period between t and t+ h
   The model assumes that the individual "comes into" period t wealth invested in assets so
that
                                      n                              W(t) == 2N, (t-h)p, (t) (3)
                                      1
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Notice that it is Ni(t - h) because Ni(t - h) is the number of shares purchased for the portfolio
in the period (t - h), and it is Pi(t) because Pi(t) is the current value ofshare ofthe, i-th asset.

The amount of consumption C for the period t, namely C(t)h and the new portfolio, Ni(t) are
simultaneously chosen, and if it it is assumed that all trades are made at known current prices,
then we have that
                              n                     -C(t)h-2[N,(t)-N,(t-h)]P,(t) (4)
                              1
Incrementing equation (3) and equation (4) by h to eliminate backward differences, we have
following two equations.

                              n                  -C(t+h)h==2[Nz(t+h)-Ni(t)]Pz(t+h) (5)
                              1
                                  n                        W(t+h) -2 N, (t) P, (t+h) (6)
                                  1
The first equation is equal to

    -C(t+h)h=]E)[Ni(t+h)-Ni(t)][Pz(t+h)-Pz(t)]+2[Ni(t+h)-Nz(t)]Pz(t) (7)

Taking the limits as h o O, we arrive at the continuous version of equations (6) and (7), respec-
tiVely.

                           nn                  -C(t)elt - IE) dN, (t)dP, (t) + IZ) dN, (t) P, (t) (8)

                            i1
                                  n                           w(t) -=2N,(t)p,(t) (g)
                                  i
Using Ito lemma, we differentiate equation (9) to get

                         nnn                   dW =2 1Vi dPi +2 dNi P, +2 dN, dP, (10)
                         111
The last terms E)? dNiPi + 2? dNidPi are the net value of additions to wealth from sources
other than capital gains. Then,we have

                               nn                      -C(t)dt=2dN,P,+2dN,dP, (11)
                               11
                                     JFrom equations (2) and (10), the budget or accumulation equation is written as

                              n                        dW =2 N, (t) dP, -C(t) dt (12)
                              1
For convenience, we define a new variable wi(t) = Ni(t)Pi(t)/W(t), the percentage of wealth
invested in the i-th asset at time t. Substituting dPi/Pi from equation (2) , we can write

equation (12) aS . n
                   dW=2w,Wcv,dt-Cdt+]E])zviWaidz, (13)
                         11
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If one of the n-asset is risk-free, by convenience, the n-th asset ,then a. = O, the instantaneous
rate of return or will be called r and is rewritten as

                       'm m                 dVV=2w,(or,-r)Wdt+(rVV-C)dt+E)wiu,Wdzi (14)

                        1 •1
where m = n - 1, and w. = 1 - Åí? wi will ensure that the identity constraints in equation (14)
is satisfied.

2.2 Optimalportfolioandconsumptionrules
The problem of choosing optimal portfolio and consumption rules for an individual who lives T
years is formulated as follows.

                                  '                               YiT
                        maxEo[.L,, U(C(t),t)dt+B(VV(T),T)] (ls)

subject to W(O) == Wo. We must note that the budget constraint equation in the case of a
risk-free asset becomes equation (14), and the utility function is assumed to be strictly concave

in C. It is also noted that the bequest function B is assumed also to be concave in W.
   To derive the optimal rules, the technique of stochastic dynamic programming is used. For
simplicity, we assume that we have one risky asset and one risk-free asset with interest rate r
whose ratio in the wealth W is defined as w. Also, we assume that tentatively the parameters cu
and a in the price process are constants (independentfrom P).
   We define
                    J(VV,t)-rgg.xEt[f,TU[C(s)]ds+B(w(T),T)] (16)

where Et is the conditional expectation operator, conditional on I2V(t) = W and Pi(t) = Pi.
Therefore,

                              J(W(T), T)-B[W(T), T] (17)
To derive the optimality equations, we restate equation (16) in a dynamic programming form so
that the Bellman's principle of optimality can be applied.
   In the following, it is assumed that the measure J(W, t) is only the function of wealth W(t)
and time t, at first. In general, from definition (1),

                   J(Mi(to), to) - max Eo [f,,` U[C(s)]ds + J(V2V(t),t)] , (18)

and in particular, (18) can be rewritten as

                      J(We,O) == maxE[f,`U[C(s)]ds+J(W(t),t] (19)

if t == to + h and the third partial derivatives of J[W(to),to)] are bounded, then by Taylor's
theorem and the mean value theorem for integrals, equation (19) can be rewritten as

J(VV(to,to) =: iigp.x Eo[U(C(t) + J[w(to),to)] + 0J[W 3ttO)' tO)] + 0J[Wa(IIti')'tO)] [w(t) - w(t,)]

                         +iOJ2[!llll51Sto,)'to)][(w(t)-w(to)2]] (2o)
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by neglecting small term O(h2). In equation (20), take the Eo operator onto each term and,
noting that J([W(to),to)] == Eo[J[W(to),to)],subtract J[W(to),to)] from both sides. Substitute
relationS Eo[W(t)-W(to)] == [w(to)(cy-r)+r]W(to) and Eo[(W(t)-I2V(to))2] = w(to)2VV(to)2a2h
for Eo[W(t) - Vl/(to)] and Eo[(VV(t) - VV(to))2], and then derive the equation by h. Take the

limit of the resultant equations as h - O and (20) becomes a continuous-time version of the
Bellman-Drefus fundamental equation of optimality as follows.

 o = .(m,)g.x(,)[u(c(t) + 0oJtt + oOwJ` [(w(t)(cy - r) + r)w(t) - c(t)] + i oOvJvt2, o2w(t)2w(t)2 (2i)

where Jt is short for J[W(t),t)] and the subscript on to has been dropped to reflect that (21)
hold for any tE [O, T].

   If we define ip(w, C, W, t) using the Dynkin operator L[J]

                            ip(zv, C, W, t)-U(C)+L[J] (22)
then, equation (21) can be rewritten in the more compact form as

                               max ip(w, C, W, t) =O (23)
                               C,w

   Now, we extend the model to general cases where the measure J(.) includes also the price
variable P(t). Namely, the parameters cM and a in the price process are dependent form P. In
these cases, the Dynkin operator is defined as

                                                             '        L == '8t + [E; wiaiw- c] oOvv + Ei aipi oOpi +SS# aijwiwj, w2 oOw22

                 +SÅíEi pipjoijopO,3pj +#E;piwwjaijop?.gw (24)

   In the definition, we assume that the measure J(.) is not only the function ofthe wealth I2V(t)
and time t, but also the function of asset prices Pi(t). The weight of these asset in the wealth
I2V(.) is defined again as zvi,i = 1,2,..,n. It is easily shown the extension of the definition is

   From the theory of stochastic dynamic programming, we have a set of optimal rules (controls)
w* and C* satisfying ÅíÅé w,*• = 1 and J(I2V, P, t) = B(W, T), where it is assumed that the Pi(t)

are generated by a strong diffusion process, U(C) is strictly concave in C, and B(I2V) is concave

in W.
   Following the usual fashion of maximization under constraint, we define the Lagrangian,
K = ip + A[1 - E? wi] where A is the multiplier and find the extreme points from the first-order

conditions.

                         O=Ko(C*,w") =- Uc(C*,t)-Jw (25)
                                             nn        O=K.,(C*,w*)=-A+JwcMkl2[i+Jww2akjiv;•VV2+E)JjvvakjPjW (26)
                                             11
                                               n                            O= KA(C*, w*) =1- IZ) wl (27)
                                                1
We have notations for partial derivatives as Jw = 0J/aW, Jt = aJ/0tJi == OJ/OPi,Jij =
aJ2/0P,Pj,J,w = aJ2/0P,0VV, Uc = 0U/0C.
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   Because Kcc = Åëcc = Ucc. < O, Kcw, == ipcw, == O, Kw,w, = aZWk2Jww,K.,.j = O, for
k l 3', a sufficient condition for a unique interior maximum is that Jww < O.
   To solve explicitly for C* and w*, we solve n + 2 nondynamic implicit equations (25)'v(27)
for C*,iv* and A as functions of Jw,Jww,Jjw,I2V, P, and t. Then, C* and iv* are substituted
in (15) which is now becomes a second-order partial differential equation for J, subject to the
boundary condition J(W, P, T) = B(W, T).
   For the case where one of the asset is risk-free, the equations are simplified because the
problem can be solved directly as an unconstrained maximum by eliminating w.. Then, the
optimal proportions in the risky assets are

               wZ='JwJwWvv Sli)vkj(ceo -r)- JJwkWwPiÅí},k =i,2, ,m (2s)

where the matrix vio• is defined as the inverse of covariance matrix oio• as

                               [vi,•]=S2,Sll=[aial (29)
Then, by substituting equations (28) and (32) into the equation (15), we have the corresponding
partial differential equation for J as

                                                                       'o == u[a, T] + .Tt + tJw [Tvv - a] + Eil) uTiaipi + i ]:lli) Sli) -Tijaijpipj - ,J:i)Wiw Sli) tJjvvpj((tzj - r)

           +llJCiJ,vW2vv:iiiSll)"zo(cMz'r)(cyjmT)-2.Til}wSii):iii)bTzwcJjwazoPzPj (30)

subject to the boundary condition J(W, P, T) = B(l7V, T), where the function G(.) is defined as
the inverse function of U(C).

                                 G- [U(C)] -i (31)
Then, we have

                                C'-G(Jw,t) (32)
   However, the original equations including general proportion of assets lead themselves to hard
problems to be solved. The equation have very deep complexity based on the nonlinearity ofthe
equations and the large number of state variables.

2.3 Optimal portfolio with prices having Poisson (Jump) processes

Returning to the consumption-portfolio problem, assume that one asset is a common stock whose
price is log-normally distributed, and the other asset is a risky bond which pays a instantaneous
rate of interest when not in default, but in the event of default, the price of the bond becomes

zero.
   The process which generates the bond's price P can be written as

                             elP=rPdt+adz-Pdq (33)
where dq is defined as a Poisson process. The simplest independent Poisson process defines the
probability of an event occurring in the time interval (t,t+ h) (where h is as small as you like)
as follows.
                 prob(t)-{K,-."h.'(,9,(h)' 8Ugn.i g,08.S,gOg.2C,C"ri. (34)
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Then, the budget equation becomes as

               dW = [wW(ce - r) +rW - C]dt + waWdz - (1 - w)Wdq

We have three optimality equations as

O - U(C*,t)+Jt(W, t)+A[J(w*W, t)-J(W, t)]+Jw(W, t)[(w*(or-r)+r)W-C"

              O = UIc(C",t) - Jw(W, t)

O = AeTvv(w"W, t) + Jw(W, t)(cM - T) + .lww(W, t)a2w*2W

(35)

]+iJww(W, t)o2w*2 w2

            (36)
            (37)

            (38)

3 ModelingofimpactofVaRregulation
3.1 SimplifiedVaRlimit
Usually, VaR is defined as the probability level

                           Prob[W(t)-I7V(t+T)] ill Lioss (39)

for a given loss probability Li... and the time horizon r. For reporting purposes the time horizon
T is typically one day or 10 days. But, we must note that we work with fixed relative portfolio
weights, although the regulator requires to assume fixed absolute weights for a given holding
period. Most particular implementations of VaR calculations, such as RiskMetrics calculate VaR
over a one-day holding period and scale it accordingly to obtain the 10-days VaR required for
regulatory reporting. For the one-day holding period, it is typically assumed that the drift of
portfolio changes is equal to zero. Under this assumption, the fixed absolute weights and the
fixed relative weight assumptions are indeed equivalent. We utilize these characteristics for the
portfolio evaluation under VaR regulations.
   There exist several models for evaluating VaR limit such as the Variance-Covariance method
(called Delta method), but these rigid definitions are not relevant to estimate the impact of VaR

regulations. Following the research by Leippold et al., we use the definition of VaR as follows
[16].

                                  VaR=6I2V(t) (40)
We work with a VaR limit proportional to current wealth W(t). Even though the VaR limit
in equation (40) is a legitimate but certainly not unique choice. In practice, different risk limit

specifications are used. However, the definition in equation (8) has some nice tractability prop-

erties when we perform the optimization. Then, we restrict our analysis to a proportional VaR
limit to mimic the regulation framework.
   We must note that the wealth dynamics depends on the stochastic state variable P(t), then
we cannot expect to obtain closed form so}utions for the bank's intertemporal decision problem
in the presence of VaR regulations. To retain analytical tractability, we approximate the VaR'
constraint shown in equation (40).
   So as to approximate the VaR constraints implied by equation (40), we apply the Ito Tayler
expansion formula to define the first-order approximation.

                                                             12    logW(t+7)cylogW(t+T)(')=logW(t)+[r(P(t))+iv(t)A(P)-2wo(P(t))2] (41)
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As Leippold et al. discussed, the approximation error using the first-order approximation is
relatively good. They define the approximation error as the probability ofthe first-order approx-
imation W(t + T)(') for the value W(t) of a fixed weight portfolio with initial weight w(t) which

is bounded by
                      Prob[log l7V(t+T)(') -log VV(t+7)] ) M] (42)
As they suggested the conditional probability that the logarithmic difference between the ap-
proximated wealth and the true wealth exceeds the amount M at time t+ T can be bounded
by a measure R. If we assume the mean-reverting geometric Brownian motion for the volatility
process, the experimental results show the approximation error M is usually bounded below 1%.
   The quality of the approximation ensures us to use the VaR approximation to investigate the
constrained dynamic portfolio. Moreover, market practice usually confines itself to regulatory
VaR figures reported based on a conditional normal distribution. The approximation implies us
the possibility of the direct portfolio bounds on the optimal policy of VaR-constrained bank.

3.2 Upperandlowerboundsofweight
It is shown that under the approximation in equation (41), the constraint Va'R is equivalent to
the following upper and lower bounds on the fraction w(t) of wealth invested in the risky asset.

                              w-(P) <- w(t)Sw'(P) (43)
It is seen from equation (8), for the VaR limit a bound on the optimal portfolio fraction that is

wealth independent. In general, the VaR limit lead of wealth-dependent VaR boundaries under
the above approximation procedure. It is also seen that w+(P) ) O and w-(P) S O. These
inequalities hold for all functional forms A(P(t)) and a(P(t)). It is also found that the portfolio

bound are functions of the interest rate r, and equity expected returns or(P(t)) and volatilities
a(P(t)).

3.3 Partial equilibrium (without Jump processes)

At the beginning for the discussion of optimal portfolio selection, we at first treat the case where

the price process includes no jump diffusion, and follows ordinary Brownian motion, however
time dependent characteristics of parameters, according to the result obtained by Leippold et al.
[18]. To reduce the bank optiMal behavior under the VaR constraints to adjust the weight w(t),

we start with assuming next two assumptions. Also we assume that there is no consumption C
for a while.

   Assumption 1
   The utility function from final wealth W(T) is defined by a CRRA-utility function

                                      W7 -1                              U(VV)- ,or<1. (44)
                                        or
   Assumption 2
   The stochastic process P(t) follows a mean reverting process given by

                       dP(t)/P(t)-or(P)dt+rdt+a(P)dZ(t) (45)
We assume that the model parameters are chosen to ensure that the process P(t) is a strictly
positive process. The wealth dynamics is written as

                      dW(t)
                            = (w(t)C(P)+r)dt+w(t)a(P)dZ(t) (46)                      W(t)
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where <(P) =: cM(P) - r.

   According to Assumption 1, the bank derives utility from only terminal wealth. Because,
here we are interested in the partial equilibrium impact of VaR constraints in the presence of a
stochastic opportunity set.

   Based on the regulatory VaR constraiBts on the approximated VaR constraint denoted as
BR(W, P) the budget•constraints, the optimal portfolio selection problem becomes

                          J(W,P,t)- max E[U(W)] (47)
                                     wEBR(W,P)

Intuitively, we see the solution of the problem must provide optimal investment strategies char-
acterized by tha region where the VaR constraint binds and a region where it does not bind.
   Consider the optimal control problem under the assumptions 1 and 2, the optimal portfolio
is given by

                      .(P,,) .. te$E`t]'); l•iva$[llll:tl (`s)

                              "wf(P(t)), otherwise

where
                                    <(P) Jw                                                    Jpw
                                             - P(t)                                                                            (49)                      wf(P(t),t) == -
                                    WJwwW                                                   WJww
is the solution for the constraint free optimal strategy. The two limits w- (P),w+(P) are given
by the solution of the following second-order equation.
   We note that the VaR is equivalent to the form by using the first-order approximation of
log W(t + T) at the confidence level v over the time horizon

                           VaR-W(t) [1-exp Q(P, w)] (50)
                                             12             C2(P,w)ilog(1-5)-[T+w<(P)-izva(P)2]T+vwa(P)vCF .(51)

with 5 = L/W(t). Then, the restriction for the VaR is equivalent to

                                   Q(P, w) SO (52)
          Q(P,w)=log(1-6)-[r+w<(P)-Sw2a(P)2]T-wa(P)V7N-'(y) (53)

where N-i(y) is the inverse function ofthe integral of normal distribution function IV(u).

   The outline of the proof is shown along the result given by Leippold et al. Under the VaR
constraint, the HJB equations for the control problem is given as

             O = m.ax[Jt + W(r + w<(P))Jvv + or(P)PJp + Sa2w2W2Jww+

                        ia2P2Jpp + ivWa2PJwp - ip(2(w(t)]

or in the simplified form as

                             O == max[-ip([?(w) + L[J]
                                  w
with the terminal condition J(W, P,t) = U(W, P), where L[J] is the
operator.

corresponding

(54)

   (55)

Dynkin
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   The first-order conditions for the problem are O = (0/0w)(-ip([2(w) + L[J]),O = ip(2(w), and
Q(w) S O, F)rom the conditions, we have

          iv(VV2Jww-TÅë)==-ElÅÄ,(<Tip+uv7ipN-'(y)+WAJw+VVa2PJpw) (s6)

Since the terms in the brackets are functions of W, X, and t there exist a function ip satisfying
the first-order condition. The inequality C2(w) S O is equivalent to w- S wf(t) S w+. If the
VaR constraint does not bind, slackness implies

                                  WnJw + o2PJwp
                           wf(t) =                                                                          (57)
                                      Wa2 Jw w

If wf 2 w+, then J solves

  O=-Jt+odp+ia2P2Jpp+(r+Cw+)WJw+ill+ff2PWJwp+5a2(i"+)2W2Jvvw (ss)

. The same PDE holds if wf S w- with w+ replaced by wm.

3.4 Optimalportfolioandconsumption
As the next step, we extend the method of VaR regulation analysis for the cases where we also
include the optimal consumption in the model. So as to obtain closed form solution, we restrict
ourselves to the cases with HARA family form of the utility function.
   As is shown in previous sections, the price process ofthe risky asset follows dP/P == cydt+adz.

The wealth process is given as

                  dW(t) =- [W(t)(r+<iv(t)-C]dt+w(t)oW(t)dz(t) (59)

In the application ofthe Ito Taylor formula to define the first-order approximation oflog W(t+7)
we must note that the variable C(t) is not multiplied by I2V(t).
   Therefore, if the functional form V(C) in the utility function is not simple, then the closed
form solution is not available. Then, in this case we assume that

                         v(c)-iior(i5-Cor+n)7,n-o (6o)

in the definition of V(C).

   Then, we have

          logW(t+T)fylogW(tLFT)(i)==logW(t)+[r+<w(t)-H-iw2a2]T (61)

                                     [P - 7Y]
                          H" 6(1 -exp[(p-,tyv) (t-T)]) (62)

where 6 = 1 - or,y = r + (a - r)2/26a2. The reduction of the definition is shown later.

   The accompanied function Q(w) becomes as

                                           1              Q(w)=log(1-5)-[r+w<-H-Ew2o2]T-wavCFN-i(y). (63)

The solutions of Q(w) == O denoted as w-,w+ give the parameters of optimal portfolio selection.
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   The same control scheme using w-,w+ is applied to the optimal portfolio selection, however

the values of w- ,w+ are given by the solution of equation (63).

                            w(t)-(wW"l iii:llwW'-l (64)

                                  kwf, otherwise

where the symbol wf is equal to the optimal value w* without VaR regulation in previous
discussion.

3.5 Partial equilibrium (withjump diffusion processes)

Now, we extend the partial equilibrium without jump diffusion in the price process to the cases
with jump diffusion in the price processes.

   We also see that the so}ution of the problem must provide optimal investment strategies
characterized by the region where the VaR constraint binds and a region where it does not bind.
Then, the calculation of w- (P),w+(P) may be affected by the diffusion processes. we assume
again that the bond price process can be written as

                             dP=TPdt+a(P)dz-dq (65)
where dq is defined as a Poisson process which is previously defined. The wealth process is
written as

                dW(t)/W(t) -= (r+<w(t))dt +w(t)adz(t) - (1 -w(t))dq (66)

We apply the Ito Taylor formula to define the first-order approximation. Then, we have

        logW(t+T)c>tlogW,(?.=logWt+[T+w(t)<(P)-A(1-zv)-5w2o(P)2]T (67)

where we assume that the expectation of dq in the time interval dt is equal to Adt.
   Then, the HJB equation with VaR restriction and second-order function (?(w) corresponding

to equation (54) and equation (63) become to be '

    O=: m.ax[Jt + C[J(wW, t) - J(VV, t)] + w(r + w<(p))Jw + ctpJp + ga2w2w2Jww+

                   Sa2i'2Jpp+2vWa2PJwp-ipQ(P,iv(t))+L[J]] (68)

    Q(P,w)=log(1-6)-[r+wC(P)-A(1-w)-Sw2a(P)2]T-wa(P)viFN-'(y) (6g)

The solutions of Q(P, w) = O denoted as w-,w+ give the parameters of optimal portfolio selec-
tion.

   The same control scheme using w-,w+ is applied to the optimal portfolio selection, however
the values of w-,w+ are given by the solution of equation (69).

- 11 -
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3.6 Optimal portfolio and consumption withjump diffusion price pro-
      cesses

Then, we finally obtain the optimal control scheme for the cases where the price processes
include thejump diffusion processes and also the optimal consumption is allowed in the dynamic
behavior. As is shown by Merton, in this case the closed form solution is obtained only for HARA
family of the function V(C). We also assume that the parameters defining price processes are
constant values.
   In these cases, the VaR regulation free solution is given by the optimal combination of C and
w (denoted as C*,w*). Moreover the wealth process is written as

        dl2V(t)-[VV(t)(T+Cw(t)-C]dt+w(t)W(t)al2V(t)dz(t)-(1-w(t))VV(t)dq (70)

In the application ofthe Ito Taylor formula to define the first-order approximation of log VV(t+T)
we must note that the variable C(t) is not multiplied by W(t). Therefore, if the functional form
V(C) in the utility function is not simple, then the closed form solution is not available. Then,
in this case we assume that eta = O in the definition of V(C), and more simplified form is given

as U(C) = C7/7.
   Then, we have

         logW(t+T)cylogW,(;).=logWt+[r+<w(t)-M-(1-w)-Sw2o2]T (71)

where
                      M-A/(1-ty)(1-exp[A(t-T)/(1-7)]), (72)
                   (a - r)2                                       (2 - 7)                                                     r>t(ce - T)                                                              (w*)ty-'] (73)                            + r] +A[1 -           A =- -7[                                             (w*)ty +
                  2a2(1-ty)) . or .                                                    2a2(1 - or)

                        w" = .(2or( i-3) + .2(iA- or) (iv')ry -' (74)

The reduction ofthese values is given later. The accompanied function Q(w) becomes as

          Q(w)==log(1-6)-[T+w<-M-(1-zv)-Siv2o2]T-wavi7N-'(v) (7s)

   The solutions of Q(w) = O denoted as wm,w+ give the parameters of optimal portfolio
selection.

   The same control scheme using w'w+ is applied to the optimal portfolio selection, however
the values of w-,w+ are given by the solution of equation (72).

                            w(t)=-test] lliurlestl (76)

                                  Kwf, otherwise -
where the symbol wf is equal to the optimal value w* without VaR regulation in previous
discussion.
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4 Examplesofconventionalworks
 4.1 Explicit solutions for a particular class utility functions

 We firstly show examples given by Merton showing explicit solutions for a particular class utility
 functions. Assume that the utility function for the individual, U(C, t) can be written as U(C, t) =
 e-PtV(C), where V is a member of the family of utility functions whose measure of absolute risk

 aversion is positive and hyperbolic in consumption, namely,

                                  ,t, c                        A(C) - -V                                   /Y                                       - i/[                                                +ny/5] >O (77)                                           1- or
 subject to the restrictions

                                  5C
                                      +op)>O,n= lifty == -oo (78)                     or l 1,6 > O,(
                                 1-7
 The family of functions is defined as the HARA family which is the concave functions having
 following forms. All member of the these HARA (hyperbolic absolute risk-aversion) family can
 be expressed as

                             v(c)-li7(16-Cor+n)'7 (7g)

 The function can realize a utility function with absolute or relative risk aversion increasing,
 decreasing or constant.
    Assuming that there are one risky asset with return r and one risky asset whose price is
 log-normally distributed, and the parameters or,o included in the price process are constant.
,lilrrom the optimality equation for J, we have

        o=(1-or7)2,-pt[ePt6JW]7/(or-')+J,+[(1-ty)op/6+rw]Jw-JJ.V2[,i,,(or.-.i)2 (80)

 subject to J(W, T) == O. Then, the equations for the optimal consumption and portfolio rules
 are reduced to
                       c*(t) .. (IE7)[eP`sJvv]i/gty-i)- (1 -6or)op (sl)

                                        Jft (dv-1)
                               W*(t)=-J.. a2 (82)
 where w*(t) is the optimal proportion of wealth invested in the risky asset at time t. Then, we
 have the explicit solution for the differential equations.

            ,J(vv,t)=6,B-7,-pt[6(1-e-p(:-iil;)(T-`)/6]6[W+;.(1-,-r(T-t))]7 (s3)

 where 6 = 1 - or,u == r + ((M - r)2/26a2. Fhrom these equations, the optimal consumption and
 portfolio rules can be written in explicit form as

                     c*(t) - [P -67,y]llllS)[ ,+,t-66i.:,--eii(ii)T) )] - %, (s,)

                   w*(t)I7V(t) == (dv6i,r)W(t)+n(sor.ii,r)(1-er(t-T)) (ss)

 The important characteristics of the solution is that the demand functions are linear in wealth.
 The fact implies us that the a family of the functions is the only class leading to the linear
 solutions.
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4.2 Optimal portfolio and consumption including Poisson processes

Merton also gives a closed-form solution for the case where the price includes the Poisson pro-
cesses as the event risk. We also assume that there are one risky asset with return r and one
risky asset whose price is log-normally distributed, and the parameters or,a included in the price

process are constant. To see the effect of default on the portfolio and consumption decisions,
consider the particular case when U(C,t) = Cty/7 for or < 1. The solutions are obtained as
follows.

                  C"(t)-AW(t)/(1-or)(1-exp[A(t-T)/(1-or)]) (86)
where
           A--or[2ig(i-r);))+r]+A[1-(2Eor)(zu*)or+2or.(,?1--rl)(.*)7-i] (s7)

                        iv*= .(2or( i-rl) + .2(iA- 7) (iv*)7-i (ss)

It is seen from the solutions that the demand of the common stock is an increasing function of
A, and A > O,w* holds for all values of cv,r, a2

4.3 Constant volatility and deterministicjump size

Liu et al. show an application of dynamic asset allocation with event risk basically following the

Merton's reduction. They assume one risk-free asset and one risky asset whose price process is
subject to event-related jumps. They originally use the model of price changes including time-
variate variances (volatility), however, we show only cases with steady (constant) volatility. The

dynamics of the price changes is written as

              dP(t) - (T +nVo - paAVo)P(t)dt + x/iJ6P(t)dZ + pap(t)dAr(t) (sg)

where all parameters are assumed to be constant. The term dN(t) denotes thejump (Poisson)
process corresponding to the event. The amplitude (size) of the price jumps is assumed to be
deterministic (constant). We assume indirect utility function as

                                 1                                    W'-7exp[A(t)+B(t)V] (90)                       J(l7V,t) -
                                1- or

Then, the optimal weight w" is obtained from the first order condition

                O == (n - rd)V+ puB - w*V+ AVE[(1+ w*X)-7XeB] (gl)

In this case, the optimal solution of w' is given as the solution of following equation

                           ,,*=n- paA+!!zAL (i+pa.*)-or (g2)
                                  t->l t->t

They show the simulation studies for the optimal portfolio by depicting the plots of weight as
a function of the value of the jump size p. From the result, it is explained that the optimal
portfolio is highly sensitive to the size ofthejump pa. Ifthejump is in the downward direction,
the investors takes a smaller position on the risky asset than he would ifjumps does not occur.
Surprisingly, however, the investor also takes a smaller position when the is in the upward
direction. The rationale for this is related to the effects ofjumps on the variance and skewness
of the distribution o terminal wealth.
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4.4 VaRregulationwithoutjumpdiffusion
Leippold et al. shows the simulation results for the optimal portfolio selection under the VaR
regulation. However, in this case, the process ofthe risky asset in restricted to a kind of Brownian

motion, and includes no jump (Poisson) process.

                         dP(t)=(e-KP(t))dt+crpP(t)dZ (93)
Again, we show the CRRA utility function as U(W) == [W7 - 1]/or,ty < 1. Then, the optimal
solution under the VaR regulation is given by wf(P(t),t) characterized by the upper bound w-
and lower bound w+.
   They discussed the simulation result for the optimal portfolio under the VaR regulation by
comparing the result where the VaR constraints are not imposed. They give the plots of optimal
portfolio strategies of a VaR-constrained and a VaR-unconstrained investor for 7 = O.5 as function
of volatility a. From the result, it is seen that for a one year investment horizon, the difference

between the two portfolio strategies is small, However, if for longer years investment horizon is

assumed, the risk-exposure of a VaR-constrained bank has already been substantially reduced
before the VaR constraint becomes binding. Therefore, it implies us that the VaR constraint
might become binding in the future leads a reduction of the bank's exposure in the risky asset.

5 Applications

5.1 Twocasesofutilityfunction
In the application of the VaR regulation analysis, we assume types of utility functions to use
the closed form solutions. Additionally, we assume that the parameters used for modeling price
processes are to be constant (time -invariant) so that we see the basic performance ofthe dynamic

portfolio selection under the VaR regulations. We consider following two cases of utility functions.

Case I: CRRA utility function.
   The utility is given by the final wealth W(T) as U(W) = (W7 - 1)/7,ty < 1. However, in
this case we dot include the optimal consumption in the portfolio selection. Initial conditions for

the parameters of the model are given as follows:
cy = O.20,r == o.10,6 = O.05,N-i(u) = -1.64, or = O.5,7 = O.Ol

a changes from O.1 to 2.00.
Case II : HARA utility function.
   In this case, the utility function is written by the HARA family as U(C, t) = ePtV(C) including
the optimal consumption where V(C) is characterized as V(C) = i:or(i6-Cty)7 introduced by

Merton. Initial conditions for t the parameters ofthe model is given as follows.
cu == O.20,r = O.10,6 = O.05,N-i(u) = -1.64, ty =: o.s,T = o.ol

o changes from O.1 to 2.00.

5.2 Partial equilibrium without jump diffusion price process

At first, we show the partial equilibrium under the VaR regulation for Case I where the price
processes including no jump diffusion. We are mainly interested in the effect of variance o
included in the price process. Therefore, we examine the behavior of zv* along the value of a.

Case I
   Then, we have the value wf which is the solution for the constraint free optimal strategy
and we can define the upper and lower bound w-,w+ as the solution of equation ([?(w) == O.
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The solution wf is equal to the optimal value w" = wf within the ragne wm S wf S w+. It
is imagined if the variance a2 increases, the risk exposure of the asset becomes large, then the

investor decrease the weight for the risky asset.

   Fig.1 shows the change of w* along the variance o by comparing it with the value wf. It is
seen from Fig.1, the value wf is larger than w+ in the region with smaller a, and the value wf
is lower than w+ in the region with larger a. The fact is not the same as our first conjecture

that the value wf is suppressed in the region with larger a , because we may experience large
risk exposure in the region with large a. However, the fact reflects the control scheme of the
stochastic dynamic programming, namely, if the variances of price dynamics is large, then the
optimization process adjusts the weight of risky asset to smaller value. On the contrary, in the
region with smaller a, the optimal solution goes outside of the VaR regulation. In nay way, from
a certain point on the axis, the investment to the risky asset (the weight w*) becomes to be very

small.

iiiiol        'e

o

+ Wf
+ wu
-i- W*

O.5 O.6 O,7 08 09 1.0 1.1 12 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

o'

Figure 1: Change of w' along a

5.3 Optimal portfolio and consumption without jump diffusion price
      process
We also treat the optimal portfolio and consumption where the price processes including nojump
diffusion.

Case II
   In this case, we can obtain a set of values of wf and Cf which correspond to the optimal
solution for the optimal portfolio and consumption without jump diffusion price process under
no Var regulation. Then, it is possible to take several conditions for checking the effect of VaR

regulation depending on situations whether we change the value w" from wf, or change C* form
Cf. It is also possible to change both of them simultaneously.
   We at first examine the effect of VaR regulation by fixing the value of C* to Cf, and by
changing the value of w" from wf so that the solutions are limited in the VaR regulation. Fig.2
show the change of w" along the variance o where the value C* is equal to Cf. In Fig.2 the optimal
value for w' is depicted only for the time t = 3 with T = 5, but we see similar performances for
other t.

   Similar to Fig.1, it is seen from Fig.2, the value wf is larger than w+ in the region with
smaller a, and the value wf is lower than w+ in the region with larger a. The fact implies us

that the variances of price dynamics is large, then the optimization process adjusts the weight of
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risky asset to smaller value, From a certain point on the axis,
(the weight w") becomes to be very small.

the investment to the risky asset

 09
 08
 O.7
 O.6
Pfpp O.5

9 o,4

 OB
 O,2
 O,1

  o
-Fts[

kti

O.5 06 O.7 08 O.9 1,O 1,1 12 1.3 1.4 1.5 1.6 1,7 1.8 19 2.0

                 a

Figure 2: Change of iv* along a (with fixed C")

   In the next step, we examine the effect of VaR regulation by changing the value of C* rather
than the value w*. We change the value of C" from Cf along the time t by fixing the value of
w" to optimal solution wf without VaR regulation. To attain the VaR regulation, the following
inequality should be hold.

Q(wf, C*) = log(1 - 5) - [r + <ivf - H(t) - Swfu2]7 - wfavii IV-i(u) g O, H(t) = C*(t)/W(t)

                                                                          (94)
The inequality means ifthe VaR regulation is not attained for a given w* = wf, we must decrease
the value of C" so that (2(wf,C') S O will be hold.
   Fig.3 (the left figure) shows the optimal C(t)" along the time t with T = 20 by comparing
the value with Cf, and the right figure shows the optiomized value of Q(2v)" along time t which
is suppresed under O. In the simulation, we fixed the value of a to O.7, and wf to wf = O.408.
As is seen from Fig.3, from time t == 17 to t = 18, the value of Q(w) becomes positive if C(t)*
is not changed from Cf, then we slightly decrease the value of C(t)", then the VaR regulation is

attained.

iiiil

o

+c(t)
+ C(t)p+c

s,CK'`f'js?'s""sSx

   o
-OOO05

DOOI
O.OOI 5

-O.O02

-O.O025

DO03
-O.O035

Q(w)*

+ Q(w)*

Figure 3: Left:Change of C(t)* along t, Right:Change of (?(iv)" along t (with fixed zv* = wf)
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5.4 Partial equilibrium withjump diffusion price process

As the next application, we show the optimal portfolio under VaR regulation for the cases where
the price processes have also thejump diffusion.

Case I
   In this case, we can obtain values of wf which correspond to the optimal solution for the
optimal portfolio withjump diffusion price process for a given A under no Var regulation. Then,
it is possible to see the effect of VaR regulation by changing A. For simplicity, we select at first

A as a fixed value and only change the value of w* from wf to attain VaR regulation.
   Fig.4 shows the change of w* along the value of o where we fix the value of A as A = O.1.
The value wf is always larger than w+ in all region of a. The fact implies us that if a certain

jump diMsion (dudden fall of price) is found in the bond price, then the optimization process
adjusts the weight ofrisky asset to smaller value in any condition. Off course, if we choose A == O,

then the result is the same as the case of no-jump diffusion. In other words, there is no VaR
regulation scheme if ajump diffusion is found in bond prices.

                    i

                   O.8

                  FO.6 +wf                  s.

                  )O.4 +w*
                   O.2

                    o
                       O.7 O.8 O.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 18 1.9 2

                                       a

:

I

e

l

E

Figure 4: Change of 2v* along a (with fixed A)

   Then, we examine the effect of the probability ofjurnp diffusion A on the VaR regulation by
changing the value of A rather than the value a. Fig.5 shows the optimal zv* along the value A
by comparing the value with wf. In the simulation, we fixed the value of a to a == 1.0. As is
seen from Fig.5, the value of ivf becomes larger if the A becomes larger. The fact means of the
bond price becomes to be unstable due to the incresse of default ptobability, the the weight of
risky asset should be increases. However, the value of w+ is always lower than wf, and then the

investor must decrease and suppress the weight for the risky asset to attain the purpose of VaR
regulations, and as a result we have w" = w+.

5.5 Optimal portfolio and consumption withjump diffusion price pro-
      cess

Then, we consider the cases of optimal portfolio-and consumption with jump diffusion price

processes.
Case II
   In this case, we can obtain values of wf and Cf which correspond to the optimal solution
for the optimal portfolio with jump diffusion price process for a given iambda under no Var
regulation. Then, it is possible to take several conditions for checking the effect of VaR regulation

depending on situations whether we change the value w* from wf, or change C* form Cf. It is
also possible to change both of them simultaneously. Moreover, the probability ofjump diffusion
A is also a parameter to affect the VaR regulation.
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Figure 5: Change of iv" along A (for fixed a and C*)

   For simplicity, at first we select A as a fixed value O.1 and also set C* to Cf and only change

the value of w* form wf to attain VaR regulation. Fig.6 shows the change of w* along the
variance o. The value wf is always larger than w+ in all region of a. The fact implies us that

withjump diffuiosn price processes, the optimization process adjusts the weight of risky asset to
smaller value for Var rgulation.
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Figure 6: Change of w* along o (for fixed A and C*)

   Then, we examine the effect of the probability ofjump diffusion A on the VaR regulation by
changing the value of A rather than the value o. Fig.7 shows the optimal w' along the value
A by comparing the value with wf. In the simulation, we fixed the value of a to a = 1.0, and
C(t)* = Cf. As is seen from Fig.7, the value of wf becomes larger if the A becomes larger. The
fact means of the bond price becomes to be unstable due to the incresse of default ptobability,
the the weight of risky asset should be increases. However, the value of w+ is always lower than

wf, and then the investor must decrease and suppress the weight for the risky asset to attain
the purpose of VaR regulations, and as a result we have w* = w+.
   In the final example, we examine the effect of VaR regulation by changing the value of C"
rather than the value w*. We change the value of C" from Cf along the time t by fixing the
value of w" to optimal solution wf without VaR regulation. To attain the VaR regulation, the
following inequality should be hold.

Q(wf, C*) = log(1 - 5) - [r + <wf - M(t) - 5wfa2]T - wfavii lv-'(u) g o,M(t) = c*(t)/w(t)

                                                                            (94)
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Figure 7i Change of w" along A (for fixed a and C*)

The inequality means if the VaR regulation is not attained for a given w* = uJf, we must decrease
the value of C" so that (?(wf,C*) S O will be hold.
   Fig.8 (the left figure) shows the optimal C(t)* along the time t with T = 20 by comparing the
value with Cf, and the right figure shows the optiomized value of Q(w)* along time t which is
suppresed under O. In the simulation, we fixed the value of a to O.7, and wf to wf = w" = O.302,
and the selection is different from the result in Fig.3. Because, in this case, the value of wf is
always Iarger than w*, and then the VaR regulation is attained only if we choose w* == w+. As
is seen from Fig.8, from time t = 17 to t = 18, the value of Q(w) becomes positive if C(t)* is
not changed from Cf, then we slightly decrease the value of C(t)*, then the VaR regulation is
attained.
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Figure 8: Left:Change of C(t)* along t, Right:Change of Q(w)' along t (with fixed w* = zuf)

6 Conclusion
This paper showed the implications of event-related jumps in security prices and the dynamic
portfolio strategies under VaR-based regulation. Based on the incomplete market model differ-
ent form normally distributed returns, we formalized the the optimization problem under VaR
constraints. With the jump-diffusion processes triggered by a Poisson event, we reduced the
Hamilton-Jacobi-Bellman partial differential equations. By assuming that VaR is proportional
to current wealth directly, first-order approximation ofthe wealth process was used. Then, we
found the optimal dynamic portfolio by switch the weight for the risky asset depending on the
boundaries of weight. We described examples application for the proposed methods.
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   For future works, it is necessary to extend the method to various fields ofinvestment problems.

Further researches will be done by the authors.
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