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Reliable Cache Architectures and Task Scheduling for
Multiprocessor Systems∗

Makoto SUGIHARA†, Tohru ISHIHARA††, and Kazuaki MURAKAMI†††, Members

SUMMARY This paper proposes a task scheduling approach for reli-
able cache architectures (RCAs) of multiprocessor systems. The RCAs
dynamically switch their operation modes for reducing the usage of vul-
nerable SRAMs under real-time constraints. A mixed integer program-
ming model has been built for minimizing vulnerability under real-time
constraints. Experimental results have shown that our task scheduling ap-
proach achieved 47.7-99.9% less vulnerability than a conventional one.
key words: Single Event Upset, SRAM, DRAM, Reliability, Cache Archi-
tecture, Task Scheduling

1. Introduction

A single event upset (SEU) on a memory module often
causes a soft error of a computer system. Occurrence of
SEUs in SRAM memories is becoming a critical issue as
technology continues to shrink [5–7]. Embedding vulner-
able SRAM modules into a system-on-a-chip (SOC) dete-
riorates reliability of the SOC. From a viewpoint of IC de-
sign, accurate reliability estimation and design for reliability
(DFR) are becoming important in order that one applies rea-
sonable DFR to vulnerable part of an IC.

Several system vulnerability estimation techniques
have been proposed [8–11,14]. A methodology and an algo-
rithm have been proposed for estimating reliability of com-
puter systems at the instruction set simulation (ISS) level
[11,14]. The estimation methodology adopts cycle-accurate
simulation to identify which part of a memory is utilized
spatially and temporally during executing programs. Iden-
tification of spatial and temporal usage of memory modules
contributes to accurate estimation of reliability of computer
systems. Since the abstraction level of ISS is higher than
that of circuit simulation, ISS-based vulnerability estima-
tion is faster than circuit simulation-based vulnerability es-
timation. ISS-based vulnerability estimation is appropriate
to identifying vulnerability parts of an IC product with short
development time.

Design for reliability (DFR) is also one of the themes
of urgent concern. Coding and parity techniques are pop-
ular design techniques for detecting or correcting SEUs in
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memory modules. These techniques have been well studied
and developed. Recently, Elakkumanan et al. have proposed
a DFR technique for logic circuits, which exploits time re-
dundancy by using scan flip-flops [2]. Their approach up-
dates a pair of flip-flops at different moments for an out-
put signal to duplicate for reliability purpose. Recently,
we have proposed reliable cache architectures (RCAs), in
which the structural redundancy of set associative cache
memories is exploited for controlling reliability and perfor-
mance of computer systems [12, 13]. The RCAs dynam-
ically change their operation modes from reliability to per-
formance modes or vice versa, for controlling reliability and
performance of computer systems. Under the performance
mode, cache ways operate same as ordinary set associa-
tive cache memories. On the contrary, under the reliabil-
ity mode, cache memories, which are made of vulnerable
SRAM cells, are made reliable by the following approaches:
(i) Disable cache ways partly or wholly. (ii) Make two or
more original cache ways constitute a single reliable cache
way. The former approach disables vulnerable part of mem-
ories and eliminates their vulnerability from the total vul-
nerability of the computer system with some performance
degradation. The latter approach decreases vulnerability of
a cache way by making it multiplicate. Two or more orig-
inal cache ways hold the same contents and behave as if
they constitute a single reliable cache way. Occurrence of
an SEU on an original cache way is detected by comparing
the values of duplicated original cache ways. Three or more
original cache ways can take majority among them and cor-
rect an SEU. Under the reliability mode of the RCA, the
virtual size of a cache memory decreases while reliability of
the cache memory increases.

The RCAs are capable of changing their operation
modes from reliability to performance modes or vice versa.
The operation mode of the RCAs must be optimally de-
termined for both high reliability and high performance of
computer systems. This paper proposes a task scheduling
method which optimally determines time series of opera-
tion modes of a computer system so that its reliability is
maximized under a real-time constraint. We build a mixed
integer programming (MIP) model for the task scheduling
problem. The target system of the task scheduling problem
is a computer system in which multiple processors run on a
non-preemptive real-time operating system (RTOS).

The remainder of this paper is organized as follows:
Section 2 reviews a tradeoff between performance and relia-
bility of a computer system. Section 3 reviews reliable cache



architectures. Section 4 presents a mathematical model to
schedule tasks for reliable cache architectures of multipro-
cessor systems. Section 5 presents experimental results on
our task scheduling method. Finally, concluding remarks
are provided in Section 6.

2. Performance and Reliability

A soft error rate (SER) is often utilized for measuring and
evaluating vulnerability of a memory component. An SER
is defined as the number of soft errors which occur dur-
ing a certain time. All SEUs are regarded as critical to
the memory component on measuring its SER. The SER is,
however, directly inapplicable to estimating vulnerability of
computer systems because computer systems dynamically
behave to use memory modules temporally and spatially.
Some of SEUs on memory modules make the computer sys-
tems faulty and the others not. In the sense, it is pessimistic
to directly adopt the SERs for evaluating reliability of com-
puter systems. From the viewpoint of executing a program,
it is not an SER, which is the number of faults during a cer-
tain time, but the number of faults during a certain task that
should be the metric for estimating reliability of computer
systems.

In this section, we briefly review relation between per-
formance and reliability of computer systems. We show
the number of soft errors during execution of a program on
a microprocessor-based system which consists of an ARM
processor (ARMv4T, 200MHz), an instruction cache mod-
ule, a data cache module, and a main memory module. The
cache line size and the number of cache-sets are 32-byte
and 32, respectively. We adopted the least recently used
(LRU) policy [4] as the cache replacement policy. We eval-
uated reliability of the computer system, which adopted the
write-through policy [4]. The cell-upset rates (CUR) of
both SRAM and DRAM modules are shown in Table 1.
We used the CURs shown by Slayman [15] as the ones of
plain SRAMs and DRAMs. According to Baumann, error
detection and correction (EDAC) or error correction codes
(ECC) protection will provide a significant reduction in fail-
ure rates (typically 10k or more times reduction in effec-
tive error rates) [1]. We have assumed that introducing an
ECC circuit makes reliability of memory modules 10k times
higher.

Table 1 Cell-upset rates.

Cell upset rates
[FIT/bit] [errors/word/cycle]

non-ECC ECC non-ECC ECC

SRAM 1.0 × 10−4 1.0 × 10−8 4.4 × 10−24 4.4 × 10−28

DRAM 1.0 × 10−8 1.0 × 10−12 4.4 × 10−28 4.4 × 10−32

Figure 1 shows vulnerability and runtime of a computer
system versus the number of cache ways. In the figure,
acronyms IL1, DL1, IMM, and DMM indicate an instruc-
tion L1 cache, a data L1 cache, an instruction main mem-
ory, and a data main memory respectively. Note that the

Fig. 1 Vulnerability vs cache size (ECC L1, ECC main memory).

size of a cache way is 1 kB and the cache size is linear to
the number of cache ways. This figure shows that increasing
the cache size of the computer system decreases its runtime
and increases its vulnerability. In this computer system, the
vulnerability of the cache memory is dominant in the en-
tire vulnerability of the computer system. The vulnerability
of the main memory is too small to see in the figure. The
figure explicitly shows that there exists a tradeoff between
vulnerability and runtime of a computer system. In other
words, it shows that cache memory sizing contributes to ad-
justing vulnerability and runtime of the computer system. In
this paper, we discuss dynamically changing the cache size
for reliability and performance of computer system in which
SRAMs are more vulnerable than DRAMs.

3. Reliable Cache Architectures

As we discussed in the previous section, decreasing the size
of a cache memory contributes to increasing reliability of a
computer system, in which the CUR of a cache memory is
much higher than that of a main memory, with some per-
formance degradation. In this section, we review reliable
cache architectures (RCAs) which dynamically change the
cache size, control the vulnerability, and affirmatively ac-
cept some performance degradation for increasing the reli-
ability [12, 13]. The reliable cache architectures are useful
especially for real-time systems in which the deadline times
of tasks are given.

There are basically three approaches for increasing re-
liability of cache memories.

Naive RCA

In this cache architecture, not all cache ways are necessarily
utilized for operations. All or some cache ways are deacti-
vated under a reliability mode for increasing reliability of a
computer system while all cache ways are activated under
a performance mode as shown in Figure 2. Ideally speak-
ing, every cache way should be capable of changing into
reliability and performance modes. From the viewpoint of
hardware implementation, some of cache ways may change
its operation mode.
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Fig. 2 Naive RCA for N-way set associative cache.
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Fig. 3 Detection-oriented RCA for N-way set associative cache.
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Fig. 4 Correction-oriented RCA for N-way set associative cache.

Detection-Oriented RCA

This cache architecture is error-detection-oriented. In this
cache architecture, two cache ways are regarded as a redun-
dant pair to constitute a single reliable cache way. The origi-
nal cache ways are to hold the same content as each other as
shown in Figure 3. If an SEU occurs on one of the original
cache ways of the redundant pair, the SEU is promptly de-
tected by comparing the contents of the original cache ways
before the CPU manages the SEU.

Correction-Oriented RCA

This cache architecture is error-correction-oriented. In this
cache architecture, three or more cache ways are regarded as
a redundant set and they retain same content as one another
as shown in Figure 4. If an SEU occurs on one of the original
cache ways, the SEU is promptly detected and corrected by
majority rule. A correct value is made by majority among
the corresponding cache ways.

The merits and demerits of the three RCAs are summa-
rized in Table 2. Computer system designers should choose
one from the three RCAs according as their products re-
quire. It is relatively easy to implement the RCAs of write-
through cache systems. Depending on the operation modes,
cache ways are chosen for read and write and additional se-
lector and comparator are added in front and back of mem-
ory modules. A selector to select a way (ways) for write is
added for all RCAs, and a selector, a comparator and selec-
tor, and a majority circuit and selector are added for read
of naive, detection-oriented, and correction-oriented RCAs
respectively. Implementation of RCAs of write-back cache
systems is more complex than that of a write-through one.
On changing operation modes, dirty data items on a cache
should be written out to a lower level of memory hierarchy.
There are two ways to write dirty data items out to a lower
level of memory hierarchy. One is a software approach and
the other is a hardware one. In a software approach, the
dirty data items are written out by writing any data item at
a hypothetical address corresponding to every data item. In
a hardware approach, the extra logic is added which write
the dirty data items out to a lower level of cache memory by
looking at their dirty flags.

Table 2 Three cache architectures.

Reliability Area overhead

Naive low low
Detection-oriented middle middle
Correction-oriented high high

Performance Power Detection Correction Cache size

high low no no ≤ 100%
middle high yes no ≤ 50%

low high yes yes ≤ 33.3%



4. Task Scheduling for Reliable Cache Architectures of
Multiprocessor Systems

In this section, we discuss reliability maximization by task
scheduling for a non-preemptive real-time operating system
(RTOS) which runs on a multiprocessor system. We build
a mixed integer programming (MIP) model to solve a task
scheduling problem for a computer system in which an RCA
is utilized. Once an MIP model is obtained for the problem,
a problem instance for the MIP model can be solved with
an MIP solver. Using an MIP solver conceils its concrete
optimization algorithms from users.

Before we build an MIP model, we review an MIP
model. An MIP model is generally described as follows
[16]:

Minimize: Ax + By
subject to: Cx + Dy ≤ E, such that x ≥ 0, y ≥ 0,

where A and B are cost vectors, C and D are constraint
matrices, E is a column vector of constants, x is a vector of
integer variables, and y is a vector of real variables. Efficient
MIP solvers are readily available [17].

We now address a task scheduling problem for a non-
preemptive RTOS on a multiprocessor system, on which
NT tasks are executed. Preemption causes large deviations
between the worst-case execution times (WCET) of tasks
that can be statically guaranteed and average-case behav-
ior. Non-preemptivity gives a better predictability on run-
time since the worst-case is closer to the average case be-
havior. Task i, 1 ≤ i ≤ NT, becomes available to start at its
arrival time ai and must finish by its deadline time di. The
RCAs, shown in Section 3, select their operation mode from
“the reliability mode” or “the performance mode.” Switch-
ing the operation modes contributes to controlling both vul-
nerability and runtime of a task. We define an RCA cache
configuration, or simply cache configuration in this paper, as
time series of switching the operation modes for finishing a
certain task. Suppose we have Mi alternative RCA cache
configurations for Task i. Each RCA cache configuration
for a task is different from one another with regard to the
time at which the operation modes are switched. The time
at which the operation modes are switched is determined by
choosing an RCA cache configuration for the task. Figure 5
shows vulnerability and performance of a computer system
on various RCA cache configurations for executing a task.
For evaluating runtime and SEU vulnerability of an RCA-
based system, we have assumed that the computer system
has a single CPU, L1 cache memory, and main memory and
that it operates under its performance and reliability modes.
The L1 cache memory behaves as four-way set-associative
cache memory under the performance mode while it is dis-
abled under the reliability mode. We have adopted the SEU
vulnerability estimation methodology [11, 14] for calculat-
ing the SEU vulnerability of the RCA-based computer sys-
tem. In every RCA cache configuration of the task, the task
starts with the reliability mode and then the operation mode

is turned into the performance mode before it finishes. In
the figure, the horizontal axis is the time at which the oper-
ation mode is turned from the reliability mode into the per-
formance one. This figure obviously shows that there is a
tradeoff between reliability and performance for executing
a task. We denote vulnerability of Cache Configuration j
for Task i by vi,j . Similarly, we denote runtime of Cache
Configuration j for Task i by li,j . Let si be a variable for
the start time of Task i.

Fig. 5 Vulnerability and performance by switching reliability to perfor-
mance mode.

The task scheduling problem that we address in this
section is to minimize system vulnerability by optimally
determining the start times s1, s2, · · · , sNT and the RCA
cache configuration of every task. The problem P is for-
mally stated as follows.

• P : Given a multiprocessor system, which consists of
NP processors, NT tasks, their arrival and deadline
times of Task i, ai and di, Mi RCA cache configura-
tions for Task i, and vulnerability vi,k and runtime li,k
of the kth RCA cache configuration of Task i, assign
every task to a processor, select an RCA cache config-
uration for each task, and determine the start time for
each task such that (1) all tasks are executable, (2) ev-
ery task completes by its deadline, and (3) the overall
system vulnerability is minimized.

We now develop an MIP model for Problem P . We
first formulate a nonlinear model, and then linearize it using
standard techniques of linearization [16].

Let xi,j , 1 ≤ i ≤ NT, 1 ≤ j ≤ NP, be a binary
variable defined as follows:

xi,j =
{

1 if Task i is assigned to Processor j,
0 otherwise.

A task is assigned to a single processor. The following
constraint, therefore, is introduced.

∑
j

xi,j = 1, 1 ≤ i ≤ NT.

Let yi,k, 1 ≤ i ≤ NT, 1 ≤ k ≤ Mi, be a binary



variable defined as follows:

yi,k =
{

1 if Cache Configuration k is adopted for Task i,
0 otherwise.

Vulnerability of a computer system is the sum of vul-
nerabilities of all tasks. Vulnerability of a task is determined
by the RCA cache configuration which is adopted. Vulnera-
bility of the computer system, therefore, is stated as follows.

V =
∑
i,k

vi,kyi,k.

A single RCA cache configuration is chosen for each
task and therefore the following constraint is introduced.

∑
k

yi,k = 1, 1 ≤ i ≤ NT.

Task i starts between its arrival time ai and its deadline
time di. The start time si is, therefore, bounded as follows.

ai ≤ si ≤ di, 1 ≤ i ≤ NT.

Task i must finish by its deadline time di. A constraint
on the deadline time of a task is introduced as follows.

si +
∑

k

li,kyi,k ≤ di, 1 ≤ i ≤ NT.

Now assume that two tasks i1 and i2 are assigned to a
processor. Two tasks are simultaneously inexecutable on the
single processor. The two tasks must be sequentially exe-
cuted on the single processor. Two tasks i1 and i2 are inexe-
cutable on the single processor if (i) si1 < si2+

∑
li2,kyi2,k

and si1 +
∑

li1,kyi1,k > si2, or (ii) si2 < si1 +
∑

li1,kyi1,k

and si2 +
∑

li2,kyi2,k > si1. The two tasks, inversely, are
executable on the processor under the following constraints.

xi1,j = xi2,j = 1

→
{(

si1 +
∑

k

li1,kyi1,k ≤ si2

)
(1)

∨
(

si2 +
∑

k

li2,kyi2,k ≤ si1

)}
,

1 ≤ i1 < i2 ≤ NT, 1 ≤ j ≤ NP.

The task scheduling problem is now stated as follows.

Minimize the cost function V =
P

i,k vi,kyi,k

subject to

1.
P

j xi,j = 1, 1 ≤ i ≤ NT.
2.

P
k yi,k = 1, 1 ≤ i ≤ NT.

3. si +
P

k li,kyi,k ≤ di, 1 ≤ i ≤ NT.
4. xi1,j = xi2,j = 1 → {(si1+

P
k li1,kyi1,k ≤ si2)∨(si2+P

k li2,kyi2,k ≤ si1)}, 1 ≤ i1 < i2 ≤ NT, 1 ≤ j ≤ NP.

Variables

• xi,j is a binary variable, 1 ≤ i ≤ NT, 1 ≤ j ≤ NP.

• yi,k is a binary variable, 1 ≤ i ≤ NT, 1 ≤ k ≤ Mi.
• si is a real variable, 1 ≤ i ≤ NT.

Bounds

• ai ≤ si ≤ di, 1 ≤ i ≤ NT.

The above constraint 4) is nonlinear and must be lin-
earized for solving the problem as an MIP model. A →
B ∨ C is the same as (A → B) ∨ (A → C) and therefore
the constraint 4) can be written as follows.

{(
xi1,j = xi2,j = 1

)
→

(
si1 +

∑
k

li1,kyi1,k ≤ si2

)}

∨
{(

xi1,j = xi2,j = 1
)

→
(

si2 +
∑

k

li2,kyi2,k ≤ si1

)}

The above constraint is a disjunction of two subconstraints
and is nonlinear. The subconstraints themselves are also
nonlinear. We first linearize the subconstraints then the dis-
junction of the two subconstraints. The subconstraints are
linearized as follows.

Linearizing (xi1,j = xi2,j = 1) → (si1 +
∑

k li1,kyi1,k ≤
si2)

• si1 +
∑

k li1,kyi1,k − si2 − Mi1,i2(1 − zi1,i2,j) ≤ 0,
1 ≤ i1 < i2 ≤ NT, 1 ≤ j ≤ NP.

• Mi1,i2 = di1 +maxk li1,k − ai2, 1 ≤ i1 < i2 ≤ NT.
• zi1,i2,j = xi1,j · xi2,j , 1 ≤ i1 < i2 ≤ NT, 1 ≤ j ≤

NP.
• zi1,i2,j ≤ xi1,j , 1 ≤ i1 < i2 ≤ NT, 1 ≤ j ≤ NP.
• zi1,i2,j ≤ xi2,j , 1 ≤ i1 < i2 ≤ NT, 1 ≤ j ≤ NP.
• zi1,i2,j ≥ xi1,j + xi2,j − 1, 1 ≤ i1 < i2 ≤ NT,

1 ≤ j ≤ NP.

Linearizing (xi1,j = xi2,j = 1) → (si2 +
∑

k li2,kyi2,k ≤
si1)

• si2 +
∑

k li2,kyi2,k − si1 − Mi2,i1(1 − zi1,i2,j) ≤ 0,
1 ≤ i1 < i2 ≤ NT, 1 ≤ j ≤ NP.

• Mi2,i1 = di2 +maxk li2,k − ai1, 1 ≤ i1 < i2 ≤ NT.

The disjunction of the two subconstraints are linearized as
follows.

Linearizing {si1 +
∑

k li1,kyi1,k − si2 − Mi1,i2(1 −
zi1,i2,j) ≤ 0} ∨ {si2 +

∑
k li2,kyi2,k − si1 − Mi2,i1(1 −

zi1,i2,j) ≤ 0}
• si1 +

∑
k li1,kyi1,k − si2 − Mi1,i2(1 − zi1,i2,j) −

Mi1,i2(1 − δi1,i2,j,1) ≤ 0, 1 ≤ i1 < i2 ≤ NT,
1 ≤ j ≤ NP.

• si2 +
∑

k li2,kyi2,k − si1 − Mi2,i1(1 − zi1,i2,j) −
Mi2,i1(1 − δi1,i2,j,2) ≤ 0, 1 ≤ i1 < i2 ≤ NT,
1 ≤ j ≤ NP.

• δi1,i2,j,1 + δi1,i2,j,2 ≥ 1, 1 ≤ i1 < i2 ≤ NT, 1 ≤



j ≤ NP.

The task scheduling problem is finally stated as follows.

Minimize the cost function V =
∑

i,k vi,kyi,k

subject to

1.
∑

j xi,j = 1, 1 ≤ i ≤ NT.
2.

∑
k yi,k = 1, 1 ≤ i ≤ NT.

3. si +
∑

k li,kyi,k ≤ di, 1 ≤ i ≤ NT.
4. si1 +

∑
k li1,kyi1,k − si2 − Mi1,i2(2 − zi1,i2,j −

δi1,i2,j,1) ≤ 0,
1 ≤ i1 < i2 ≤ NT, 1 ≤ j ≤ NP.

5. si2 +
∑

k li2,kyi2,k − si1 − Mi2,i1(2 − zi1,i2,j −
δi1,i2,j,2) ≤ 0,
1 ≤ i1 < i2 ≤ NT, 1 ≤ j ≤ NP.

6. δi1,i2,j,1 + δi1,i2,j,2 ≥ 1, 1 ≤ i1 < i2 ≤ NT, 1 ≤
j ≤ NP, 1 ≤ i1 < i2 ≤ NT, 1 ≤ j ≤ NP.

7. zi1,i2,j ≤ xi1,j , 1 ≤ i1 < i2 ≤ NT, 1 ≤ j ≤ NP.
8. zi1,i2,j ≤ xi2,j , 1 ≤ i1 < i2 ≤ NT, 1 ≤ j ≤ NP.
9. zi1,i2,j ≥ xi1,j + xi2,j − 1, 1 ≤ i1 < i2 ≤ NT,

1 ≤ j ≤ NP.

Variables

• xi,j is a binary variable, 1 ≤ i ≤ NT, 1 ≤ j ≤ NP.
• yi,k is a binary variable, 1 ≤ i ≤ NT, 1 ≤ k ≤ Mi.
• zi1,i2,j is a binary variable, 1 ≤ i1 < i2 ≤ NT,

1 ≤ j ≤ NP.
• δi1,i2,j,1 and δi1,i2,j,2 are binary variables, 1 ≤ i1 <

i2 ≤ NT, 1 ≤ j ≤ NP.
• si is a real variable, 1 ≤ i ≤ NT.

Bounds

• ai ≤ si ≤ di, 1 ≤ i ≤ NT.

Solving the above MIP model yields the optimal schedule
which achieves the minimal vulnerability under a certain
real-time constraint.

5. Experimental Results

5.1 Experimental Setup

In order to observe effect of our task scheduling method
which is stated in Section 4, we adopted a computer sys-
tem, which has two ARM CPU cores (ARMv4T, 200
MHz), for experiment. Each CPU core has a 4 kB four-
way set-associative instruction cache, a 4 kB four-way set-
associative data cache, and a main memory modules, as
shown in Figure 6. We adopted the naive RCA for cache
memories, which was presented in Section 3. The perfor-
mance mode enabled all cache ways while the reliability
mode disabled all of them. We assumed that two CPU cores
have their own main memory and can independently trans-
fer data from/to their own main memory. The cache line

size and the number of cache-sets are 32-byte and 32, re-
spectively. We adopted the LRU policy for cache line re-
placement. We used the CURs of both SRAM and DRAM
modules which are shown in Table 1.

I-Cache
CPU core

D-Cache
Main Memory

Fig. 6 A target system.

We used nine benchmark programs as shown in Ta-
ble 3. Three of the benchmark programs are Compress ver-
sion 4.0, JPEG encoder version 6b, and MPEG2 encoder
version 1.2. We also used basicmath, bitcnts, qsort, susan1,
susan2, and susan3, which are supplied from MiBench, an
embedded benchmark suite [3]. Varying the time at which
the operation mode turns from the reliability mode into the
performance one, we made up several RCA cache config-
urations for every task. The numbers of RCA cache con-
figurations are shown in Table 3. Minimal and maximal
runtimes, and minimal and maximal vulnerabilities for each
task among its RCA cache configurations are also shown
in Table 3. RCA cache configurations are different from
each other regarding time series of switching the operation
modes, concretely speaking, when operation modes switch
from reliability mode into performance one in this experi-
ment.

We used the GNU C compiler and debugger to gener-
ate address traces. All programs were compiled with “-O3”
option. We assumed that the operation mode of a CPU core
may change only once from reliability mode to performance
one during execution of each task.

We used an ILOG CPLEX 9.1 optimization engine [17]
to solve the MIP model shown in Section 4 so that vulner-
ability of the computer system was minimized. We solved
all scheduling problem instances on an AMD Opteron 275
processor which runs at 2.2 GHz.

Figure 7 shows a flow of our experiment. First of all, all
traces for benchmark programs have been obtained. Next,
we have defined a hypothetical multiprocessor system as we
described at the beginning of this section. And then trace-
driven ISS has been executed for obtaining runtime and SEU
vulnerability of every program. At the same time, we have
given hypothetical arrival and deadline times to every pro-
gram as shown in Table 3. Finally, an MIP problem instance
has been solved with a commercial MIP solver. Once all the
values of runtime, vulnerability for all RCA cache configu-
ration of every task, and arrival and dead times are obtained,
the MIP solver can seek for a solution of optimal schedule
to minimize SEU vulnerability as shown in Figure 7.

5.2 Experimental Results

Vulnerability of the computer system was minimized under
five scenarios. The scenarios are different from one another
regarding both arrival and deadline times. The arrival and



Table 3 Benchmark programs.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9

Program name Compress JPEG MPEG2 basicmath bitcnts qsort susan1 susan2 susan3
# RCA cache configurations 45 43 35 24 19 14 16 18 16

Min runtime [106 cycles/task] 335 187 138 898 74 48 23 20 6
Max runtime [106 cycles/task] 865 821 679 2,258 346 138 149 32 14

Min vulnerability [10−21 errors/task] 7 18 4 111 9 2 3 1 0
Max vulnerability [10−21 errors/task] 27,050 36,402 12,579 64,846 7,477 2,769 2,116 1,902 655

Arrival and deadline times,
ai and di [106 cycles]

Scenario 1 0/ASAP 0/ASAP 0/ASAP 0/ASAP 0/ASAP 0/ASAP 0/ASAP 0/ASAP 0/ASAP
Scenario 2 0/1,500 0/1,500 0/1,500 0/1,500 1,100/1,500 1,300/1,500 1,300/1,500 1,400/1,500 1,400/1,500
Scenario 3 0/2,000 0/2,000 0/2,000 0/2,000 1,600/2,000 1,800/2,000 1,800/2,000 1,900/2,000 1,900/2,000
Scenario 4 0/2,500 0/2,500 0/2,500 0/2,500 2,100/2,500 2,300/2,500 2,300/2,500 2,400/2,500 2,400/2,500
Scenario 5 0/∞ 0/∞ 0/∞ 0/∞ 0/∞ 0/∞ 0/∞ 0/∞ 0/∞

MIP solver (ILOG CPLEX)

Minimal vulnerability
and optimal schedule

Arrival and deadline times
for every task

Is vulnerability
satisfactory?

Yes

No

End

Define the number of CPUs
and choose an RCA under

constraints on area,
power, performance and reliability

Runtimes and vulnerabilities
for every task 

Generate an object code
for every task

(GCC).

HardwareObject code

Obtain runtime and
vulnerability of a task for

every RCA cache configuration
(by using the SEU vulnerability

estimation methodology in [11,14])

Specify arrival and deadline
times for every task,

according to the system
requirement

Fig. 7 Experiment flow

deadline times for all tasks are shown in Table 3. In Sce-
nario 1, all tasks become available from the beginning and
are required to finish as soon as possible. The vulnerability
of Scenario 1 is basically equivalent to that of a non-RCA
computer system. In Scenario 5, all tasks become available
from the beginning and have no real time constraints. The
vulnerability of Scenario 5 is basically equivalent to that of
a computer system which has no cache memories.

Table 4 shows vulnerability, runtime of the computer
system, and computation time under the five scenarios. Note
that the vulnerability of Scenario 1 is basically equivalent to
that of a non-RCA computer system. The vulnerability of
Scenario 1 is the upper bound of vulnerability and the run-
time is the lower bound of runtime. Comparing with the
vulnerability value of Scenario 1, we have found that our
task scheduling method has achieved 47.7-99.9% less vul-
nerability as the deadline constraints have made some slack.
Runtime of the computer system has become 1.6-3.0 times
longer. Note that increase of runtime has no disadvantage as
far as task scheduling satisfies deadline constraints, that is
real-time ones.

Table 4 Experimental results.

Vulnerability Runtime Computation time
[10−21 errors] [106 cycles] [s]

Scenario 1 6,855,090.3 966.9 0.0
Scenario 2 3,585,254.8 1500.0 351.9
Scenario 3 1,617,569.3 2000.0 145.3
Scenario 4 138,019.2 2500.0 1168.1
Scenario 5 6,813.8 2875.1 0.0

It has taken less than a second to minimize vulnera-
bility under Scenarios 1 and 5 while about two to twenty
minutes under Scenarios 2, 3 and 4. The reason why the
computation time has become so short under Scenario 1 has
been that the RCA cache configuration of the shortest run-
time, in which no reliability mode has been used, has been
always chosen as an optimal one for every task. Similarly,
the reason why the computation time has become so short
under Scenario 5 has been that the RCA cache configuration
of the longest runtime, in which no performance mode has
been used, has been always chosen as an optimal one for ev-
ery task. In Scenarios 2, 3 and 4, tasks have conflicted with
the others and the solution space on which the optimization
engine has sought for an optimal solution has become large.
However, optimization time less than 20 minutes is practical
for statically minimizing vulnerability of a computer system
offline. A heuristic task scheduling method should be stud-
ied and developed for adaptively minimizing vulnerability
online. Variation in runtime of tasks should be taken into
account for developing online scheduling.

6. Conclusion

In this paper, we have presented a task scheduling method
for reliable cache memories of non-preemptive multipro-
cessor systems, in which cache memories are capable of
changing their operating modes from reliability to perfor-
mance modes or vice versa, for controlling vulnerability
and runtime of the computer systems. We have built an
MIP model for minimizing vulnerability of a multiprocessor
system under real-time constraints. We have presented sev-
eral experiments, in which our task scheduling has achieved
47.7-99.9% less vulnerability than a naive task scheduling
method for a non-RCA computer system.

Our task scheduling method presented in this paper



has been mainly built for statically minimizing vulnerabil-
ity of non-preemptive multiprocessor systems offline. Our
task scheduling method is effective especially for minimiz-
ing vulnerability of a computer system statically before its
operation. Runtime of a task varies depending on its input
data and probably becomes shorter than its WCET. Shorter
execution time of the task makes slack for the other tasks to
run under the reliability mode. An adaptive task scheduling
method should be examined for exploiting slack for more
reliable operation.
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