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ABSTRACT 
Share of leakage in cache memories is increasing with technology 

scaling. Studies show that most stored bits in instruction caches 

are zero, and hence, asymmetric SRAM cells which dissipate less 

leakage when storing 0, effectively reduce leakage with negligible 

performance penalty. We show that by carefully choosing register 

operands of instructions, it is possible to further increase the 

number of 0 bits, and hence, increase leakage savings in 

instruction cache. This compiler technique is performed off-line 

and introduces absolutely no delay penalty since processor 

registers are all the same. Experimental results of our benchmarks 

show up to 33% (averaging 30.35%) improvement in leakage.  

Categories and Subject Descriptors 
B.3.1 [Semiconductor Memories]: Static memory (SRAM). B.3.2 

[Design Styles]: Cache memories. D.3.4 [Processors]: 

Compilers, Optimization. 

General Terms 
Algorithms, Measurement, Design, Experimentation. 

1. INTRODUCTION 
Cache memories are a major source of power consumption in 

processor-based embedded systems and consume up to half of 

total power   [6]. With technology scaling, dynamic power reduces 
but static (leakage) power increases, and hence, leakage comprises 

an increasingly larger portion of cache power consumption. This 

motivates techniques to reduce cache leakage power especially 

when noting that cache memories occupy the largest area in today 

embedded processors (e.g.70% of StrongARM    [6]). 

Cache-decay  [4] and drowsy caches   [2] turn off or put into sleep 
mode those parts of the cache that are not likely to be accessed by 

current computation; they, however, cannot reduce leakage of 

those parts that are being accessed. Another way to reduce cache 

leakage is to increase threshold voltage (Vth), but this slows down 

the cells unless supply voltage (Vdd) is also increased which raises 

dynamic power consumption. The large bias of stored bits toward 

zero   [7] has been the motive in  [1] to design asymmetric SRAM 
cells that employ higher Vth for the transistors that leak when the 

cell stores 0. Consequently, such asymmetric cells dissipate far 

less leakage in the 0 state; the delay penalty is minimized by 

careful design of the sense-amplifiers. We present a software-level 

technique that needs no change to the above asymmetric-cell 

cache, but reinforces its benefits in instruction caches.  

We change the register operands of instructions in the binary 

executable of the application such that number of 0 bits is 

increased in the instruction-cache; since asymmetric SRAM cells 

dissipate less leakage when storing a 0, this results in less leakage 

compared to the initial register assignment. This is a low-cost 

technique that is applied off-line to the binary executable of the 

applications and reduces the leakage corresponding to register 

operands up to 33% at no performance cost because all processor 

registers have the same speed, and moreover, this technique does 

not affect cache miss ratio. Modifying register operands changes 

the switching activity on the processor-cache bus and also on 

cache to off-chip memory bus, and hence, potentially changes the 

dynamic power; our experiments to evaluate this effect are on-

going but their results are not reported in this preliminary work. 

While dynamic register-renaming is a well known technique in 

high-performance computing, to the best of our knowledge it has 

not been used to reduce leakage power in the past, although it has 

previously been proposed for bus dynamic power reduction  [9]. 

2. RELATED WORKS AND OUR APPROACH 
Several compiler techniques reduce power  [3] [8] [9] [11]- [14] but 
most of them focus on dynamic power, not leakage power. 

Compiler-inserted special instructions are used in   [14] to 
deactivate (put into low-leakage mode) those cache lines of data-

cache whose data are not used by the current computation. But 

this requires that each cache-line can be individually put in low-

leakage mode, and furthermore, the processor core needs to be 

extended by special instructions to activate/deactivate cache-lines. 

In addition, it targets only unused cache lines. Assuming the 

cache is already implemented using asymmetric cells (due to their 

advantage in leakage power and minimal or no impact on other 

quality factors), our approach needs no hardware modification 

while it reduces leakage even in the cache lines being used.  

Special instructions for dynamic voltage scaling and adaptive 

body biasing are inserted by compiler in  [3] to reduce total power 
consumption including leakage. Our work does not need any extra 

actions or core-control instructions during program execution; it 

is a one-off task at compile-time needing no run-time action, and 

hence, imposes no overhead. 

Register-renaming is a well known technique in high-performance 

computing to eliminate false dependence among instructions that 

otherwise could not have been executed in parallel. It is usually 

applied at run-time, but we change register operands statically to 

increase number of zero bits. This has been used to reduce bus 

switching and reduce dynamic power  [9] but to the best of our 
knowledge, has not been used in the past for leakage reduction. 
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2.1 Asymmetric SRAM Design 
Noting the strong bias toward 0 in bit content of instruction and 

data caches  [7], Azizi et al. proposed to design SRAM cells that 

dissipate less leakage when storing a 0   [1]. They observed that (i) 
subthreshold leakage is the major contributor to leakage power in 

SRAM, and (ii) disjoint sets of transistors contribute to leakage 

when storing 0 compared to storing 1; Fig. 1 shows the leakage 

paths when the cell stores a 0 (note that bit lines are precharged to 

Vdd): M1 has no voltage across its drain to source and M2 and M5 

are not in the subthreshold region, and hence, do not leak. 

Subthreshold leakage is the main contributor to leakage in cache 

memories  [4] [2]. Detailed simulations using BSIM3v3/BSIM4 
predictive models of 90nm, 65nm, 45nm, and 32nm technologies 

also show that gate leakage as well as other leakage components 

are very low even in 32nm process and that subthreshold leakage 

is the dominant factor   [10]. 

 
Figure 1. Leakage paths when SRAM cell is storing a 0. 

Since subthreshold leakage can be effectively reduced by 

increasing Vth,  [1] used higher Vth for M3, M4, and M6 in one of 
their designs to reduce leakage when storing 0; they also modified 

sense-amplifier to compensate the reduced speed of high-Vth 

transistors. The reduced leakage power is achieved at the cost of a 

marginal increase in cell delay or its stability. They designed and 

examined a family of such asymmetric cells in  [1]; characteristics 

of better cells are summarized in Table I  [7]. The Leakage 
columns are normalized leakages when storing 0 and 1. ∆delay is 

the performance penalty. ∆SNM (increase in signal-to-noise 

margin) and ∆Itrip/Iread (current necessary to trip the cell value) are 

stability measures; in these two columns, a positive percentage 

suggests an increase in stability. Dynamic power of the cells is the 

same for 0 and 1 since sizes of cell transistors are symmetric. 

Table I. Characteristics of asymmetric cells     [7] 

 Leakage (%) 

 (0) (1) 
∆delay ∆SNM ∆Itrip/Iread 

Regular Vth (symmetric cell) 100 100 0% 0% 0% 

Leakage Enhanced 1 14 5% 7% -5% 

Speed Enhanced 14 50 0% -6% 15% 

Stability-Leakage Enhanced 14 43 5% 23% -7% 

Stability-Speed Enhanced 50 53 0% 9% 13% 

2.2 Motivational Example 
M32R Instruction Format. We implemented our technique on a 

32-bit RISC processor, M32R  [5], and the motivational example 
also uses that processor. The instruction word is 32 bits and can 

consist of either two 16-bit instructions or one 32-bit instruction; 

left-most bit determines which one is the case. The left register 

operand designates the destination register. M32R has 16 general 

purpose registers two of which serve special functionality: R14 is 

link register for procedure calls and R15 is stack pointer.  

Motivational Example. This is a small code excerpt of MPEG2 

encoder compiled for M32R showing respectively hex address, 

instruction encoding, and instruction in assembly-like language: 

27fe30:  e6 36 d6 68   load r6,36d668 <gptr> 

27fe34:  e7 30 88 d4   load r7,3088d4 <image> 

27fe38:  27 46 06 a7   store r7,@r6 -> add r6,r7 

The “->” sign shows the right-hand 16-bit instruction is executed 

after the left-hand one. The register operands are in bold 

underlined font in the instruction encoding.  

There are 51 zero bits in the above three instructions. Recalling 

Table I that shows the asymmetric cells dissipate less leakage 

when storing a 0, leakage can be further reduced if we can 

increase the number of zero bits. We propose to do this by 

changing the register operands of instructions. In the above code 

excerpt, if we change registers r6 and r7 respectively to r0 and r1, 

total zero bits increase to 63 and instructions change as follows:  

27fe30:  e0 36 d6 68   load r0,36d668 <gptr> 

27fe34:  e1 30 88 d4   load r1,3088d4 <image> 

27fe38:  21 40 00 a1   store r1,@r0 -> add r0,r1 

Note that although number of 0 bits has improved by 24% in this 

example, the actual reduction in leakage depends on (i) difference 

between leakage when storing a 0 and a 1, (ii) the amount of time 

each instruction resides in cache; depending on the instruction 

address and the cache configuration, different instructions spend 

different times in cache. We consider these items in experiments. 

Note that neither the instructions nor their addresses change; only 

usage of registers is changed. Consequently, there is absolutely no 

penalty in terms of performance by this approach. 

2.3 Our Approach 
Obviously the amount of leakage saving using asymmetric cells in 

an instruction cache depends on the number of 0 bits in each 

instruction. Thus leakage can be further reduced if the instructions 

are composed of more 0’s. Typically, compilers start from register 

R0 when assigning variables to registers during code generation, 

and continue to the highest-numbered available register. This is 

reasonable since traditionally no register is superior to others; 

however, this approach is not optimal when an instruction-cache 

is designed with asymmetric cells. For example, the conventional 

approach respectively uses R0, R1, R2, and R3 for the first four 

variables, while it is more beneficial to use R4 instead of R3 since 

binary representation of 4 has more 0’s than that of 3. 

This register-assignment strategy can be done at code-generation 

stage of a compiler. But since in some cases source code of the 

application is not available to recompile, or source code of the 

compiler is not at hand or is hard and/or risky to modify, a binary-

level modification can be preferential. We applied this technique 

to the binary executables of M32R processor. Note that control- 

and data-dependencies among instructions should be considered 

when applying this technique at binary-level so that the producer-

consumer relation among instructions does not change. 

Fig. 2 outlines our proposed technique. The application source 

code is compiled to produce the binary executable. This binary 

file is processed by our optimization technique (the shadowed 

gray box) to statically rename register operands; the result is a 

modified binary executable of the same original size which is 

stored in the instruction memory of the target embedded system. 

We assume that in order to reduce leakage power, the embedded 

system is already equipped with an instruction-cache composed of 

asymmetric SRAM cells. Nothing changes from the processor 

point of view; no hardware or run-time change is needed.  

Finally, note that since some registers have special functionality, 

they can neither be changed, nor others can be changed to them. 

Stack pointer and machine status registers are among such cases. 



 
Figure 2. Block diagram of our proposed technique. 

3. PROBLEM FORMULATION 
We define the following notation: 

B: binary executable of the application. 

G: control-data-flow graph of the entire application. 

R: set of general-purpose registers of the processor.  

The problem can be formally defined as follows: 
“For a given processor, choose the register operands of 

instructions in the binary executable B such that number of zeros 

in each instruction is maximized, subject to the control- and data-

dependencies among the instructions (i.e. G) and available 

general-purpose registers R.” 

The following algorithm implements our technique. The binary 

executable of the application along with its corresponding 

control-data-flow graph are input to the algorithm. Target is a 

single-issue in-order RISC processor, M32R—see Section  2.2. 

Algorithm 1: StaticRegisterRenaming(B, G) 

Inputs: (B: Binary executable of the app.) 

        (G: control-data-flow Graph of B) 

Output: (MB: Modified Binary executable)  

1  MB = empty; 

2  determine live registers at each node of G; 

3  for each instruction i in B do 

4    dst = destination register of i; 
5    src = first source register of i; 

6    S = the set of general-purpose registers 

         excluding live ones; 

7    if S is not empty then 

8      R = the register in S whose binary repre- 

        sentation has the highest number of 0’s; 

9      change dst to R; 

10     propagateRegRenaming(G, dst, R); 
11     update live-registers information in G; 

12     write the modified instruction to MB; 

13   else 

14     write original instruction i to MB; 

15   endif 

16 endfor 

The algorithm iteratively processes all instructions of the binary 

executable; both 16-bit and 32-bit instructions are processed in 

the same order as they are executed on M32R. Basically we only 

rename the destination registers; then the source registers which 

correspond to the newly renamed register are similarly renamed. 

For each instruction, the set of live registers are known from 

control-data-flow graph G; live registers are those that are still to 

be (potentially) read by an instruction down the sequential control 

flow. Register operands cannot be renamed to live registers 

otherwise useful data in the live registers would be corrupted. 

Determining live registers in a sequential code (line 2) is a well 

known task in compiler and high-level synthesis. 

The S in line 6 represents the set of all registers to which a 

register operand can be safely renamed. Note that dst register 

itself may also be live if it is to be read by current instruction; in 

such case, S may be empty, and hence, renaming cannot be 

applied (line 14). If S is not empty, the register in S whose binary 

encoding has the highest number of zeros is selected (line 8), 

current instruction is modified to use it instead of the original 

dst (line 9), and the new renaming is propagated to all successor 

instructions (i.e., those which are a consumer of the result 

produced by this instruction in dst)—line 10. Information of live 

registers is also updated to reflect this new renaming (line 11). 

Finally the modified instruction is appended to the output binary 

executable (line 12). Some registers have special functionality 

(e.g. R14 and R15 in M32R) and can be neither renamed nor 

renamed to. This is considered in line 6 when generating S. 

The algorithm has a time- and space-complexity of O(n2), where n 

represents number of instructions in the binary executable, since 

lines 10 and 11 are O(n).  

4. EXPERIMENTAL RESULTS 
Table II shows the specifications of the benchmarks. The 

algorithm took only a fraction of a second to complete on a 

2.66GHz Pentium-4 processor with 1GB of memory. 

Table II. Benchmarks specifications. 

Benchmark 

No of  

instructions 

MPEG2 encoder ver. 1.2 114162 

FFT 86509 

JPEG encoder ver. 6b 88679 

Compress ver. 4.1 69894 

FIR 4176 

DCT 2518 

Fig. 3 shows the setup of experiments. The benchmarks are 

compiled by M32R port of GCC, and the generated listing file is 

processed by our algorithm in our experiments so as to avoid 

difficulties with manipulating binary executables. The GCC-

generated binary is simulated by M32R Instruction-Set Simulator 

(ISS) to obtain a trace of application execution. This trace is used 

both to validate correct implementation of the algorithm as well as 

to obtain leakage energy—see below. Our algorithm (the gray 

shadowed box) decides the new register operands for each 

instruction. These are used by the “Trace rewriting” box to modify 

the original trace file and produce a new modified one. The 

original and modified traces are simulated by another M32R ISS 

that receives trace files instead of binary executables (gray boxes 

in the middle of Fig. 3). Finally the outputs of these two 

executions are compared (the triangle at the left-hand side of Fig. 

3) to make sure the register renaming implementation has not 

introduced errors. In addition, both trace files are input to a cache 

simulator to obtain the number of clock cycles that each 

instruction remains in the cache (T(i,w) values below). Finally, 

leakage is calculated using Eq. 1 (below) with following notation: 

• T(i, w) or cache-residence time: The amount of time that 

instruction number i remains in way w of its corresponding 

cache set. Note that the cache set corresponding to each 

instruction is fixed, but the cache way may differ over time. 

• L0: Leakage power of asymmetric SRAM cell when storing a 0. 

• L1: Leakage power of asymmetric SRAM cell when storing a 1. 



• Ni: Total number of instructions in the application. 

• Nb(i): Number of bits of register operands for each instruction.  

• Nw: Number of cache ways. 

• inst[i][b]: value of bit number b of register operands in 
instruction i (can be 0 or 1). 

• E: Total leakage energy of register operands in the instruction 

cache when storing application instructions: 
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Each term in this summation gives the leakage energy dissipated by 

bit b of register operands of instruction i at way w of cache.  

Experiments Results. Table III shows the reductions in leakage 

after static register-renaming, as compared to the original register 

assignment; benchmarks in Table II are examined when the cache is 

implemented using various types of asymmetric cell in Table I.  

The savings highly depend on the leakage in 0 and 1 state in the 

employed asymmetric cell. The best results are achieved for 

Leakage-Enhanced type where the leakage is minimal and a big 

difference exists between L0 and L1 (Table I), whereas for Stability-

Speed Enhanced cell where there is no big difference between L0 

and L1, savings are marginal. Also note that although L0 largely 

differs from L1 in Speed Enhanced and also Stability-Leakage 

Enhanced cells, the percentage of leakage reduction by our 

technique is less than Leakage Enhanced case since the former cases 

originally (i.e., before static register-renaming) dissipate more 

leakage than latter. Table IV clarifies this by giving normalized 

leakages in each case before applying our technique. 

5. SUMMARY AND CONCLUSION 
We presented a software-optimization technique that reinforces the 

leakage-saving advantages obtainable by asymmetric SRAM in an 

instruction-cache. Since asymmetric cells leak less when storing 0, 

by increasing the number of 0 bits in the instructions it is possible to 

further reduce leakage. We did this by statically changing register 

operands in the binary executable, and showed that up to 32.86% 

(averaging 30.35%) more leakage can be saved.  

It is important to note that since this is a one-off software technique 

it has very low cost, and moreover, it imposes no delay overhead 

since nothing changes except the used registers (which have the 

same speed). This technique can also be used in other asymmetric 

structures, such as ROM, to reduce dynamic power. Evaluating the 

effect on dynamic power is part of our future work. 
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Figure 3. Experiments setup.  

Table III. Leakage saving results on different types of 

asymmetric-cell caches (8KB direct-map cache in all cases) 

SRAM 

 type 

Benchmark 

Leakage 

Enhanced 

Speed 

Enhanced 

Stability-

Leakage 

Enhanced 

Stability-

Speed 

Enhanced 

MPEG2 26.36% 15.35% 13.64% 0.67% 

FFT 26.30% 15.14% 13.43% 0.65% 

JPEG 32.86% 18.52% 16.37% 0.78% 

Compress 31.79% 18.64% 16.58% 0.83% 

FIR 32.35% 18.92% 16.82% 0.83% 

DCT 28.45% 16.03% 14.16% 0.67% 

Average 30.35% 17.45% 15.47% 0.75% 

 

Table IV. Original leakages normalized to Stability-Speed 

Enhanced case (8KB direct-map cache) 

SRAM 

 type 

Benchmark 

Leakage 

Enhanced 

Speed 

Enhanced 

Stability-

Leakage 

Enhanced 

Stability-

Speed 

Enhanced 

MPEG2 11.08 52.67 47.76 100 

FFT 10.79 51.87 47.12 100 

JPEG 10.28 50.50 46.02 100 

Compress 11.25 53.14 48.13 100 

FIR 11.18 52.94 47.98 100 

DCT 10.26 50.45 45.98 100 

Average 10.81 51.93 47.16 100 

 


