
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Instruction Cache Leakage Reduction by Changing
Register Operands and Using Asymmetric SRAM
Cells

Goudarzi, Maziar
System LSI Research Center, Kyushu University

Ishihara, Tohru
System LSI Research Center, Kyushu University

https://hdl.handle.net/2324/10198

出版情報：Great Lakes Symposium on VLSI. 2008, 2008-05-06
バージョン：
権利関係：

Instruction Cache Leakage Reduction by Changing

Register Operands and Using Asymmetric SRAM Cells
Maziar Goudarzi, Tohru Ishihara

System LSI Research Center, Kyushu University, Fukuoka, Japan

{goudarzi, ishihara}@slrc.kyushu-u.ac.jp

ABSTRACT
Share of leakage in cache memories is increasing with technology

scaling. Studies show that most stored bits in instruction caches

are zero, and hence, asymmetric SRAM cells which dissipate less

leakage when storing 0, effectively reduce leakage with negligible

performance penalty. We show that by carefully choosing register

operands of instructions, it is possible to further increase the

number of 0 bits, and hence, increase leakage savings in

instruction cache. This compiler technique is performed off-line

and introduces absolutely no delay penalty since processor

registers are all the same. Experimental results of our benchmarks

show up to 33% (averaging 30.35%) improvement in leakage.

Categories and Subject Descriptors
B.3.1 [Semiconductor Memories]: Static memory (SRAM). B.3.2

[Design Styles]: Cache memories. D.3.4 [Processors]:

Compilers, Optimization.

General Terms
Algorithms, Measurement, Design, Experimentation.

1. INTRODUCTION
Cache memories are a major source of power consumption in

processor-based embedded systems and consume up to half of

total power [6]. With technology scaling, dynamic power reduces
but static (leakage) power increases, and hence, leakage comprises

an increasingly larger portion of cache power consumption. This

motivates techniques to reduce cache leakage power especially

when noting that cache memories occupy the largest area in today

embedded processors (e.g.70% of StrongARM [6]).

Cache-decay [4] and drowsy caches [2] turn off or put into sleep
mode those parts of the cache that are not likely to be accessed by

current computation; they, however, cannot reduce leakage of

those parts that are being accessed. Another way to reduce cache

leakage is to increase threshold voltage (Vth), but this slows down

the cells unless supply voltage (Vdd) is also increased which raises

dynamic power consumption. The large bias of stored bits toward

zero [7] has been the motive in [1] to design asymmetric SRAM
cells that employ higher Vth for the transistors that leak when the

cell stores 0. Consequently, such asymmetric cells dissipate far

less leakage in the 0 state; the delay penalty is minimized by

careful design of the sense-amplifiers. We present a software-level

technique that needs no change to the above asymmetric-cell

cache, but reinforces its benefits in instruction caches.

We change the register operands of instructions in the binary

executable of the application such that number of 0 bits is

increased in the instruction-cache; since asymmetric SRAM cells

dissipate less leakage when storing a 0, this results in less leakage

compared to the initial register assignment. This is a low-cost

technique that is applied off-line to the binary executable of the

applications and reduces the leakage corresponding to register

operands up to 33% at no performance cost because all processor

registers have the same speed, and moreover, this technique does

not affect cache miss ratio. Modifying register operands changes

the switching activity on the processor-cache bus and also on

cache to off-chip memory bus, and hence, potentially changes the

dynamic power; our experiments to evaluate this effect are on-

going but their results are not reported in this preliminary work.

While dynamic register-renaming is a well known technique in

high-performance computing, to the best of our knowledge it has

not been used to reduce leakage power in the past, although it has

previously been proposed for bus dynamic power reduction [9].

2. RELATED WORKS AND OUR APPROACH
Several compiler techniques reduce power [3] [8] [9] [11]- [14] but
most of them focus on dynamic power, not leakage power.

Compiler-inserted special instructions are used in [14] to
deactivate (put into low-leakage mode) those cache lines of data-

cache whose data are not used by the current computation. But

this requires that each cache-line can be individually put in low-

leakage mode, and furthermore, the processor core needs to be

extended by special instructions to activate/deactivate cache-lines.

In addition, it targets only unused cache lines. Assuming the

cache is already implemented using asymmetric cells (due to their

advantage in leakage power and minimal or no impact on other

quality factors), our approach needs no hardware modification

while it reduces leakage even in the cache lines being used.

Special instructions for dynamic voltage scaling and adaptive

body biasing are inserted by compiler in [3] to reduce total power
consumption including leakage. Our work does not need any extra

actions or core-control instructions during program execution; it

is a one-off task at compile-time needing no run-time action, and

hence, imposes no overhead.

Register-renaming is a well known technique in high-performance

computing to eliminate false dependence among instructions that

otherwise could not have been executed in parallel. It is usually

applied at run-time, but we change register operands statically to

increase number of zero bits. This has been used to reduce bus

switching and reduce dynamic power [9] but to the best of our
knowledge, has not been used in the past for leakage reduction.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

GLSVLSI’08, May 4–6, 2008, Orlando, Florida, USA.

Copyright 2008 ACM 978-1-59593-999-9/08/05...$5.00.

2.1 Asymmetric SRAM Design
Noting the strong bias toward 0 in bit content of instruction and

data caches [7], Azizi et al. proposed to design SRAM cells that

dissipate less leakage when storing a 0 [1]. They observed that (i)
subthreshold leakage is the major contributor to leakage power in

SRAM, and (ii) disjoint sets of transistors contribute to leakage

when storing 0 compared to storing 1; Fig. 1 shows the leakage

paths when the cell stores a 0 (note that bit lines are precharged to

Vdd): M1 has no voltage across its drain to source and M2 and M5

are not in the subthreshold region, and hence, do not leak.

Subthreshold leakage is the main contributor to leakage in cache

memories [4] [2]. Detailed simulations using BSIM3v3/BSIM4
predictive models of 90nm, 65nm, 45nm, and 32nm technologies

also show that gate leakage as well as other leakage components

are very low even in 32nm process and that subthreshold leakage

is the dominant factor [10].

Figure 1. Leakage paths when SRAM cell is storing a 0.

Since subthreshold leakage can be effectively reduced by

increasing Vth, [1] used higher Vth for M3, M4, and M6 in one of
their designs to reduce leakage when storing 0; they also modified

sense-amplifier to compensate the reduced speed of high-Vth

transistors. The reduced leakage power is achieved at the cost of a

marginal increase in cell delay or its stability. They designed and

examined a family of such asymmetric cells in [1]; characteristics

of better cells are summarized in Table I [7]. The Leakage
columns are normalized leakages when storing 0 and 1. ∆delay is

the performance penalty. ∆SNM (increase in signal-to-noise

margin) and ∆Itrip/Iread (current necessary to trip the cell value) are

stability measures; in these two columns, a positive percentage

suggests an increase in stability. Dynamic power of the cells is the

same for 0 and 1 since sizes of cell transistors are symmetric.

Table I. Characteristics of asymmetric cells [7]

 Leakage (%)

 (0) (1)
∆delay ∆SNM ∆Itrip/Iread

Regular Vth (symmetric cell) 100 100 0% 0% 0%

Leakage Enhanced 1 14 5% 7% -5%

Speed Enhanced 14 50 0% -6% 15%

Stability-Leakage Enhanced 14 43 5% 23% -7%

Stability-Speed Enhanced 50 53 0% 9% 13%

2.2 Motivational Example
M32R Instruction Format. We implemented our technique on a

32-bit RISC processor, M32R [5], and the motivational example
also uses that processor. The instruction word is 32 bits and can

consist of either two 16-bit instructions or one 32-bit instruction;

left-most bit determines which one is the case. The left register

operand designates the destination register. M32R has 16 general

purpose registers two of which serve special functionality: R14 is

link register for procedure calls and R15 is stack pointer.

Motivational Example. This is a small code excerpt of MPEG2

encoder compiled for M32R showing respectively hex address,

instruction encoding, and instruction in assembly-like language:

27fe30: e6 36 d6 68 load r6,36d668 <gptr>

27fe34: e7 30 88 d4 load r7,3088d4 <image>

27fe38: 27 46 06 a7 store r7,@r6 -> add r6,r7

The “->” sign shows the right-hand 16-bit instruction is executed

after the left-hand one. The register operands are in bold

underlined font in the instruction encoding.

There are 51 zero bits in the above three instructions. Recalling

Table I that shows the asymmetric cells dissipate less leakage

when storing a 0, leakage can be further reduced if we can

increase the number of zero bits. We propose to do this by

changing the register operands of instructions. In the above code

excerpt, if we change registers r6 and r7 respectively to r0 and r1,

total zero bits increase to 63 and instructions change as follows:

27fe30: e0 36 d6 68 load r0,36d668 <gptr>

27fe34: e1 30 88 d4 load r1,3088d4 <image>

27fe38: 21 40 00 a1 store r1,@r0 -> add r0,r1

Note that although number of 0 bits has improved by 24% in this

example, the actual reduction in leakage depends on (i) difference

between leakage when storing a 0 and a 1, (ii) the amount of time

each instruction resides in cache; depending on the instruction

address and the cache configuration, different instructions spend

different times in cache. We consider these items in experiments.

Note that neither the instructions nor their addresses change; only

usage of registers is changed. Consequently, there is absolutely no

penalty in terms of performance by this approach.

2.3 Our Approach
Obviously the amount of leakage saving using asymmetric cells in

an instruction cache depends on the number of 0 bits in each

instruction. Thus leakage can be further reduced if the instructions

are composed of more 0’s. Typically, compilers start from register

R0 when assigning variables to registers during code generation,

and continue to the highest-numbered available register. This is

reasonable since traditionally no register is superior to others;

however, this approach is not optimal when an instruction-cache

is designed with asymmetric cells. For example, the conventional

approach respectively uses R0, R1, R2, and R3 for the first four

variables, while it is more beneficial to use R4 instead of R3 since

binary representation of 4 has more 0’s than that of 3.

This register-assignment strategy can be done at code-generation

stage of a compiler. But since in some cases source code of the

application is not available to recompile, or source code of the

compiler is not at hand or is hard and/or risky to modify, a binary-

level modification can be preferential. We applied this technique

to the binary executables of M32R processor. Note that control-

and data-dependencies among instructions should be considered

when applying this technique at binary-level so that the producer-

consumer relation among instructions does not change.

Fig. 2 outlines our proposed technique. The application source

code is compiled to produce the binary executable. This binary

file is processed by our optimization technique (the shadowed

gray box) to statically rename register operands; the result is a

modified binary executable of the same original size which is

stored in the instruction memory of the target embedded system.

We assume that in order to reduce leakage power, the embedded

system is already equipped with an instruction-cache composed of

asymmetric SRAM cells. Nothing changes from the processor

point of view; no hardware or run-time change is needed.

Finally, note that since some registers have special functionality,

they can neither be changed, nor others can be changed to them.

Stack pointer and machine status registers are among such cases.

Figure 2. Block diagram of our proposed technique.

3. PROBLEM FORMULATION
We define the following notation:

B: binary executable of the application.

G: control-data-flow graph of the entire application.

R: set of general-purpose registers of the processor.

The problem can be formally defined as follows:
“For a given processor, choose the register operands of

instructions in the binary executable B such that number of zeros

in each instruction is maximized, subject to the control- and data-

dependencies among the instructions (i.e. G) and available

general-purpose registers R.”

The following algorithm implements our technique. The binary

executable of the application along with its corresponding

control-data-flow graph are input to the algorithm. Target is a

single-issue in-order RISC processor, M32R—see Section 2.2.

Algorithm 1: StaticRegisterRenaming(B, G)

Inputs: (B: Binary executable of the app.)

 (G: control-data-flow Graph of B)

Output: (MB: Modified Binary executable)

1 MB = empty;

2 determine live registers at each node of G;

3 for each instruction i in B do

4 dst = destination register of i;
5 src = first source register of i;

6 S = the set of general-purpose registers

 excluding live ones;

7 if S is not empty then

8 R = the register in S whose binary repre-

 sentation has the highest number of 0’s;

9 change dst to R;

10 propagateRegRenaming(G, dst, R);
11 update live-registers information in G;

12 write the modified instruction to MB;

13 else

14 write original instruction i to MB;

15 endif

16 endfor

The algorithm iteratively processes all instructions of the binary

executable; both 16-bit and 32-bit instructions are processed in

the same order as they are executed on M32R. Basically we only

rename the destination registers; then the source registers which

correspond to the newly renamed register are similarly renamed.

For each instruction, the set of live registers are known from

control-data-flow graph G; live registers are those that are still to

be (potentially) read by an instruction down the sequential control

flow. Register operands cannot be renamed to live registers

otherwise useful data in the live registers would be corrupted.

Determining live registers in a sequential code (line 2) is a well

known task in compiler and high-level synthesis.

The S in line 6 represents the set of all registers to which a

register operand can be safely renamed. Note that dst register

itself may also be live if it is to be read by current instruction; in

such case, S may be empty, and hence, renaming cannot be

applied (line 14). If S is not empty, the register in S whose binary

encoding has the highest number of zeros is selected (line 8),

current instruction is modified to use it instead of the original

dst (line 9), and the new renaming is propagated to all successor

instructions (i.e., those which are a consumer of the result

produced by this instruction in dst)—line 10. Information of live

registers is also updated to reflect this new renaming (line 11).

Finally the modified instruction is appended to the output binary

executable (line 12). Some registers have special functionality

(e.g. R14 and R15 in M32R) and can be neither renamed nor

renamed to. This is considered in line 6 when generating S.

The algorithm has a time- and space-complexity of O(n2), where n

represents number of instructions in the binary executable, since

lines 10 and 11 are O(n).

4. EXPERIMENTAL RESULTS
Table II shows the specifications of the benchmarks. The

algorithm took only a fraction of a second to complete on a

2.66GHz Pentium-4 processor with 1GB of memory.

Table II. Benchmarks specifications.

Benchmark

No of

instructions

MPEG2 encoder ver. 1.2 114162

FFT 86509

JPEG encoder ver. 6b 88679

Compress ver. 4.1 69894

FIR 4176

DCT 2518

Fig. 3 shows the setup of experiments. The benchmarks are

compiled by M32R port of GCC, and the generated listing file is

processed by our algorithm in our experiments so as to avoid

difficulties with manipulating binary executables. The GCC-

generated binary is simulated by M32R Instruction-Set Simulator

(ISS) to obtain a trace of application execution. This trace is used

both to validate correct implementation of the algorithm as well as

to obtain leakage energy—see below. Our algorithm (the gray

shadowed box) decides the new register operands for each

instruction. These are used by the “Trace rewriting” box to modify

the original trace file and produce a new modified one. The

original and modified traces are simulated by another M32R ISS

that receives trace files instead of binary executables (gray boxes

in the middle of Fig. 3). Finally the outputs of these two

executions are compared (the triangle at the left-hand side of Fig.

3) to make sure the register renaming implementation has not

introduced errors. In addition, both trace files are input to a cache

simulator to obtain the number of clock cycles that each

instruction remains in the cache (T(i,w) values below). Finally,

leakage is calculated using Eq. 1 (below) with following notation:

• T(i, w) or cache-residence time: The amount of time that

instruction number i remains in way w of its corresponding

cache set. Note that the cache set corresponding to each

instruction is fixed, but the cache way may differ over time.

• L0: Leakage power of asymmetric SRAM cell when storing a 0.

• L1: Leakage power of asymmetric SRAM cell when storing a 1.

• Ni: Total number of instructions in the application.

• Nb(i): Number of bits of register operands for each instruction.

• Nw: Number of cache ways.

• inst[i][b]: value of bit number b of register operands in
instruction i (can be 0 or 1).

• E: Total leakage energy of register operands in the instruction

cache when storing application instructions:

()∑∑∑
= = =

×−×+×=
i b wN

i

iN

b

N

w

wiTbiinstLbiinstLE
1

)(

1 1

),(])][[1(0]][[1 (1)

Each term in this summation gives the leakage energy dissipated by

bit b of register operands of instruction i at way w of cache.

Experiments Results. Table III shows the reductions in leakage

after static register-renaming, as compared to the original register

assignment; benchmarks in Table II are examined when the cache is

implemented using various types of asymmetric cell in Table I.

The savings highly depend on the leakage in 0 and 1 state in the

employed asymmetric cell. The best results are achieved for

Leakage-Enhanced type where the leakage is minimal and a big

difference exists between L0 and L1 (Table I), whereas for Stability-

Speed Enhanced cell where there is no big difference between L0

and L1, savings are marginal. Also note that although L0 largely

differs from L1 in Speed Enhanced and also Stability-Leakage

Enhanced cells, the percentage of leakage reduction by our

technique is less than Leakage Enhanced case since the former cases

originally (i.e., before static register-renaming) dissipate more

leakage than latter. Table IV clarifies this by giving normalized

leakages in each case before applying our technique.

5. SUMMARY AND CONCLUSION
We presented a software-optimization technique that reinforces the

leakage-saving advantages obtainable by asymmetric SRAM in an

instruction-cache. Since asymmetric cells leak less when storing 0,

by increasing the number of 0 bits in the instructions it is possible to

further reduce leakage. We did this by statically changing register

operands in the binary executable, and showed that up to 32.86%

(averaging 30.35%) more leakage can be saved.

It is important to note that since this is a one-off software technique

it has very low cost, and moreover, it imposes no delay overhead

since nothing changes except the used registers (which have the

same speed). This technique can also be used in other asymmetric

structures, such as ROM, to reduce dynamic power. Evaluating the

effect on dynamic power is part of our future work.

6. ACKNOWLEDGMENTS
This work is supported by VDEC, The University of Tokyo with

collaboration of STARC, Panasonic, NEC Electronics, Renesas

Technology, and Toshiba. This work is also supported by CREST

project of JST. We are grateful for their support.

7. REFERENCES
[1] Azizi N., Najm F., Moshovos A. 2003. Low-leakage asymmetric-cell

SRAM. IEEE Trans. on VLSI, 11, 4, 701-715.

[2] Flautner K., et al. 2005. Drowsy caches: simple techniques for reducing
leakage power. Proc. Int’l Symp. Computer Architecture.

[3] Huang P.K., Ghiasi S. 2006. Leakage-aware intraprogram voltage scaling
for embedded processors. Proc. Design Automation Conference (DAC), pp.

364-369.

[4] Kaxiras S., Hu Z., Martonosi M. 2001. Cache decay: exploiting
generational behavior to reduce cache leakage power. Int’l Symp. on

Computer Architecture, 240-251.

[5] M32R Family 32-bit RISC Microcomputer, http://www.renesas.com
[6] Moshnyaga V.G. and Inoue K. 2005. Low-Power Cache Design. In Low-

Power Electronics Design, CRC Press.

[7] Moshovos A., Falsafi B., Najm F., Azizi N. 2005. A case for asymmetric-
cell cache memories. IEEE Trans. VLSI, 13, 7.

[8] Panda P. R., et al. 2001, “Data and memory optimization techniques for
embedded systems,” ACM T. Des. Automat. EL., 6, 2.

[9] Petrov P., Orailoglu A. 2003. Comipler-based register name adjustment for
low-power embedded processors. Proc. ICCAD.

[10] Rodriguez S., Jacob B. 2006. Energy/Power Breakdown of Pipelined
Nanometer Caches (90nm/65nm/45nm/32nm). Int. Symp. on Low Power

Electronic and Design (ISLPED’06), pp.25-30.

[11] Steinke S., Wehmeyer L., Lee B.S., Marwedel P. 2002. Assigning program
and data objects to scratchpad for energy reduction. Proc. of Design

Automation and Test in Europe (DATE).

[12] Tomiyama H., Yasuura H. 1997. Code placement techniques for cache
miss rate reduction. ACM T. Des. Automat. EL., 2, 4.

[13] Verma M., Wehmeyer L., Marwedel P. 2006. Cache-aware scratchpad-
allocation algorithms for energy-constrained embedded systems. IEEE

Trans. on CAD, 25, 10, 2035-2051.

[14] Zhang W., Kandemir M., Karakoy M., Chen G. 2005. Reducing data cache
leakage energy using a compiler-based approach. ACM Trans. Embedded

Computing Systems, 4, 3.

Figure 3. Experiments setup.

Table III. Leakage saving results on different types of

asymmetric-cell caches (8KB direct-map cache in all cases)

SRAM

 type

Benchmark

Leakage

Enhanced

Speed

Enhanced

Stability-

Leakage

Enhanced

Stability-

Speed

Enhanced

MPEG2 26.36% 15.35% 13.64% 0.67%

FFT 26.30% 15.14% 13.43% 0.65%

JPEG 32.86% 18.52% 16.37% 0.78%

Compress 31.79% 18.64% 16.58% 0.83%

FIR 32.35% 18.92% 16.82% 0.83%

DCT 28.45% 16.03% 14.16% 0.67%

Average 30.35% 17.45% 15.47% 0.75%

Table IV. Original leakages normalized to Stability-Speed

Enhanced case (8KB direct-map cache)

SRAM

 type

Benchmark

Leakage

Enhanced

Speed

Enhanced

Stability-

Leakage

Enhanced

Stability-

Speed

Enhanced

MPEG2 11.08 52.67 47.76 100

FFT 10.79 51.87 47.12 100

JPEG 10.28 50.50 46.02 100

Compress 11.25 53.14 48.13 100

FIR 11.18 52.94 47.98 100

DCT 10.26 50.45 45.98 100

Average 10.81 51.93 47.16 100

