<会議発表論文>
(In)approximability of Maximum Minimal FVS

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
会議情報
出版タイプ
アクセス権
権利関係
権利関係
関連DOI
関連DOI
関連URI
関連HDL
関連ISBN
関連HDL
関連情報
概要 We study the approximability of the NP-complete Maximum Minimal Feedback Vertex Set problem. Informally, this natural problem seems to lie in an intermediate space between two more well-studied proble...ms of this type: Maximum Minimal Vertex Cover, for which the best achievable approximation ratio is √n, and Upper Dominating Set, which does not admit any n^<1-ε> approximation. We confirm and quantify this intuition by showing the first non-trivial polynomial time approximation for Max Min FVS with a ratio of O(n^<2/3>), as well as a matching hardness of approximation bound of n^<2/3-ε>, improving the previous known hardness of n^<1/2-ε>. Along the way, we also obtain an O(Δ)-approximation and show that this is asymptotically best possible, and we improve the bound for which the problem is NP-hard from Δ ≥ 9 to Δ ≥ 6.
Having settled the problem’s approximability in polynomial time, we move to the context of super-polynomial time. We devise a generalization of our approximation algorithm which, for any desired approximation ratio r, produces an r-approximate solution in time n^<O(n/r^<3/2>)>. This time-approximation trade-off is essentially tight: we show that under the ETH, for any ratio r and ε > 0, no algorithm can r-approximate this problem in time n^<O((n/r^<3/2>)^<1-ε>)>, hence we precisely characterize the approximability of the problem for the whole spectrum between polynomial and sub-exponential time, up to an arbitrarily small constant in the second exponent.
続きを見る

本文ファイル

pdf 7347461 pdf 1.67 MB 14  

詳細

EISSN
レコードID
関連ISBN
主題
注記
助成情報
登録日 2025.04.22
更新日 2025.04.28

この資料を見た人はこんな資料も見ています