<会議発表論文>
Evolutionary Multi-modal Optimization Using Persistence-Based Clustering in Riemannian Manifolds

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
会議情報
出版タイプ
アクセス権
利用開始日
権利関係
関連DOI
概要 This paper presents an innovative approach employing persistence-based clustering in Riemannian manifolds within evolutionary computation algorithms to address multi-modal optimization problems. The p...roposed framework is im-plemented and evaluated using the chaotic evolution algorithm. We introduce a novel algorithm named chaotic evolution with a clustering algorithm (CECA), which integrates the chaotic evolution characteristics from chaotic systems with the clustering method and Gaussian local search to solve multi-modal optimization problems. By leveraging chaotic dynamics, CECA enhances exploration and exploitation for efficient searching. Simultane-ously, it utilizes the clustering method to improve population diversity in the context of multi-modal optimization problems. The effectiveness and advantages of the proposed framework on the CECA algorithm are demonstrated through extensive experimental evaluations of various benchmark functions, in-cluding the Congress on Evolutionary Computation (CEC) con-ference functions. The experimental results indicate that the proposed framework exhibits distinct advantages in optimizing high-dimensional complex multi-modal functions. This study provides empirical evidence that persistence-based clustering in Riemannian manifolds constitutes an effective methodology for evolutionary multi-modal optimization.続きを見る

本文ファイル

公開年月日:2026.06.30 pdf 1.06 MB   リーマン多様体における永続性ベースのClusteringを用いた進化的多峰性最適化

詳細

レコードID
主題
登録日 2024.07.02
更新日 2024.08.19

この資料を見た人はこんな資料も見ています