<学術雑誌論文>
Anomaly Detection Using LSTM-Autoencoder to Predict Coal Pulverizer Condition on Coal-Fired Power Plant

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
出版タイプ
アクセス権
Crossref DOI
権利関係
概要 Coal pulverizing systems reliability can be ensured effectively by using prognostics and health management approach. A mathematical model of coal pulverizing system used for anomaly detection is hard ...to be constructed due to its dynamic and nonlinear high-dimensional system typically. This paper proposed the use of the Long-Short Term Memory Autoencoder model for anomaly detection of the coal pulverizing system on a coal-fired power plant. The LSTM will solve the gradient reduction problem, and Autoencoder will improve the generalizability of the model. As a result, the proposed model can detect the anomaly successfully before the Sequent of Events occurs.続きを見る

本文ファイル

pdf Pages_089-097 pdf 1.78 MB 847  

詳細

PISSN
EISSN
レコードID
査読有無
主題
登録日 2021.04.02
更新日 2024.02.21

この資料を見た人はこんな資料も見ています