作成者 |
|
|
|
|
|
|
本文言語 |
|
出版者 |
|
|
発行日 |
|
収録物名 |
|
巻 |
|
出版タイプ |
|
アクセス権 |
|
関連DOI |
|
|
関連URI |
|
|
関連情報 |
|
|
概要 |
This paper describes a machine learning system that discovered a "negative motif", in transmembrane domain identification from amino acid sequences, and reports its experiments on protein data using P...IR database. We introduce a decision tree whose node are labeled with regular patterns. As a hypothesis, the system produces such decision tree for a small number of randomly chosen positive and negative examples from PIR. Experiments show that our system finds reasonable hypotheses very successfully. As a theoretical foundation, we show that the class of languages defined by decision trees of depth at most d over k-variable regular patterns is polynomial time learnable in the sense of probably approximately correct (PAC) learning for any fixed d, $ k gep 0 $.続きを見る
|