<紀要論文>
REAL QUADRATIC FIELDS, CONTINUED FRACTIONS, AND A CONSTRUCTION OF PRIMARY SYMMETRIC PARTS OF ELE TYPE

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
出版タイプ
アクセス権
関連DOI
関連URI
関連HDL
概要 For a non-square positive integer d with 4 ∤ d, put ω(d) :=(1 + √<d>)/2 if d is congruent to 1 modulo 4 and ω(d) := √<d> otherwise. Let a_1, a_2, . . . , a_<ℓ-1> be the symmetric part of the simple co...ntinued fraction expansion of ω(d). We say that the sequence a_1, a_2, . . . , a_<[ℓ/2]> is the primary symmetric part of the simple continued fraction expansion of ω(d). A notion of ‘ELE type' for a finite sequence was introduced in Kawamoto et al (Comment. Math. Univ. St. Pauli 64(2) (2015), 131-155). The aims of this paper are to introduce a notion of ‘pre-ELE type' for a finite sequence and to give a way of constructing primary symmetric parts of ELE type. As a byproduct, we show that there exist infinitely many real quadratic fields with period ℓ of minimal type for each even ℓ ≥ 6.続きを見る

詳細

PISSN
NCID
レコードID
主題
助成情報
登録日 2019.12.10
更新日 2021.04.28

この資料を見た人はこんな資料も見ています