It is clear that ground conditions have a large effect on the thermal environment. A numerical experiment was carried out to determine the diurnal changes of energy flux on various types of land use. Wind velocity, potential temperature and specific humidity were applied respectively at the upper boundary 100 m, and a temperature was specified for the lower boundary -0.5 m. All these conditions were kept constant throughout the simulation period. The analysis were performed on the basis of data obtained in Fukuoka City (latitude 33 33'N) on July. The model was simplified by (1) omitting advection, (2) no consideration on the topographical difference and (3) adopting the most outstanding land usage as the unit mesh (200 m X 200 m) character. The daily amounts of sensible and latent heat flux were large in a order of town, upland field, paddy field, orchard and forest. And that of latent heat flux was in a reverse order. Recently, remote-sensing is widely used for the exvironmental assessment. But in most cases, those are limited to the instantaneous data. The simulation presented here will effectively be used for the estimation of unknown data which cannot be measured.