<会議発表論文>
Enhancing Collaborative Variational Autoencoder with Tag and Citation Information for Scientific Article Recommendation

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
会議情報
出版タイプ
アクセス権
Crossref DOI
概要 Hybrid methods such as collaborative deep learning (CDL) and collaborative variational autoencoder (CVAE) have become state-of-the-art methods in recommender systems for scienti_c articles. However, t...hey typically use only information from titles and abstracts of arti-cles, and ignore potentially useful information in the tags and citations. Therefore, they may miss articles that contain vastly di_erent content from other articles, although those articles present the same topic. We addressed this problem by developing the CiT-CVAE model that consid- ers tag and citation information when providing recommendations. Our experimental results indicate that the proposed model achieves consis- tent improvement compared with CDL and CVAE.続きを見る

本文ファイル

pdf p015 pdf 501 KB 421  

詳細

EISSN
レコードID
主題
助成情報
登録日 2019.03.29
更新日 2024.01.11

この資料を見た人はこんな資料も見ています