<紀要論文>
SOM-based Human Action Recognition Using Local Feature Descriptor CHOG3D

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
出版タイプ
アクセス権
JaLC DOI
概要 Human action recognition is applied in a wide field, such as video surveillance, intelligent interface, and intelligent robots. However, since various action classes, complex surrounding, interaction ...with objects, et al., it is still a complex problem to be solved. In this paper, we propose a method combining the Self-Organizing Map(SOM) and the classifier k-Nearest Neighbor algorithm (k-NN) to recognize human actions. We represent human actions in the form of local features using a compact descriptor, a histogram of oriented gradient in spatio-temporal 3D space(CHOG3D), which was proposed by us in the paper 1). Then we adopt SOM for feature training to extract key features of action information. With these key features, we adopt k-NN for action recognition. In our experiments, we test the optimal map size of SOM and the proper value k of k-NN for correct recognition. Our method is tested on KTH, Weizmann and UCF datasets, and results certify its efficiency.続きを見る

本文情報を非表示

paper1(17-1) pdf 787 KB 252  

詳細

PISSN
EISSN
NCID
レコードID
査読有無
関連情報
主題
タイプ
登録日 2012.05.30
更新日 2018.12.21

この資料を見た人はこんな資料も見ています