作成者 |
|
本文言語 |
|
出版者 |
|
|
発行日 |
|
収録物名 |
|
巻 |
|
号 |
|
開始ページ |
|
終了ページ |
|
出版タイプ |
|
アクセス権 |
|
関連DOI |
|
関連URI |
|
関連HDL |
|
概要 |
Murata and Umehara gave a classification of complete flat fronts in the Euclidean 3-space and proved their orientability. Here, a flat front is a flat surface (i.e., a surface where one of the princip...al curvatures is identically zero) with admissible singularities. In this paper, we investigate wave fronts where one of the principal curvatures is a non-zero constant. Although they are orientable in the regular surface case, there exist non-orientable examples. We classify weakly complete ones and derive their orientability.続きを見る
|