作成者 |
|
|
|
|
|
|
|
|
本文言語 |
|
出版者 |
|
発行日 |
|
収録物名 |
|
巻 |
|
号 |
|
出版タイプ |
|
アクセス権 |
|
関連DOI |
|
関連DOI |
|
関連URI |
|
関連URI |
|
関連HDL |
|
関連情報 |
|
概要 |
In order to improve the thrust performance of a miniature microwave discharge ion thruster, the relationship between electron number density/temperature and operational conditions, mass flow rate, inc...ident microwave power and magnetic field strength were measured by means of laser Thomson scattering. A photon counting method and a triple grating spectrometer were used against a small Thomson scattering signal and a strong stray laser light. Electron number density increased with incident microwave power and was saturated at critical incident microwave power; it was about 1.2×1018 m3 at incident microwave power > 8 W. In addition, electron number density increased with mass flow rate and became saturated; it was about 1.7×1018 m3 at mass flow rate > 0.04 mg/s. The electron number density gradually increased with an increase in the number of magnets, i.e., magnetic field strength. There was a sudden jump at thirteen magnets, although the thruster failed to ignite at fourteen magnets. This is because there is an optimum distance between the antenna and the electron cyclotron resonance layer. These results suggest that future improvement in thrust efficiency in miniature microwave discharge ion thrusters may come from the fine adjustment of the magnetic field configuration inside the discharge chamber.続きを見る
|