<会議発表論文>
On the Length of the Minimum Solution of Word Equations in One Variable
作成者 | |
---|---|
本文言語 | |
出版者 | |
発行日 | |
収録物名 | |
巻 | |
開始ページ | |
終了ページ | |
出版タイプ | |
アクセス権 | |
関連DOI | |
関連DOI | |
関連URI | |
関連URI | |
関連HDL | |
関連情報 | |
概要 | We show the tight upperbound of the length of the minimum solution of a word equation L = R in one variable, in terms of the differences between the positions of corresponding variable occurrences in ...L and R. By introducing the notion of difference, the proof is obtained from Fine and Wilfrsquos theorem. As a corollary, it implies that the length of the minimum solution is less than N = |L|+|R|.続きを見る |
詳細
レコードID | |
---|---|
査読有無 | |
関連URI | |
ISSN | |
ISBN | |
DOI | |
注記 | |
登録日 | 2009.10.15 |
更新日 | 2017.11.10 |