作成者 |
|
|
|
|
本文言語 |
|
出版者 |
|
|
発行日 |
|
収録物名 |
|
巻 |
|
号 |
|
開始ページ |
|
終了ページ |
|
出版タイプ |
|
アクセス権 |
|
JaLC DOI |
|
関連DOI |
|
関連URI |
|
関連情報 |
|
概要 |
R-trees are widely used in spatial and multi-dimensional databases. However, according to our investigation, the overlap among the leaf nodes of R-trees is serious and the objects are not well-cluster...ed in the leaf nodes, which greatly affect the effect of the pruning strategies when nearest neighbor searching is performed and also affect the other search performance of R-trees. The forced reinsertion introduced in R*-tree can improve this problem to some extent, but can not completely solve this problem. In this study, we try to combine SUM (Self Organizing Map) technology and R*-tree technology to lessen the overlap among the leaf nodes of R*-tree and to improve the clustering degree of the objects in the leaf nodes. The experimental result shows that the SUM-based R*-tree proposed in this paper has a much better search performance than R*-tree.続きを見る
|