<学術雑誌論文>
SVMによる2部ランキング学習を用いたコンピュータ将棋における評価関数の学習

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
出版タイプ
アクセス権
関連URI
概要 近年,将棋の評価関数の設計においては,機械学習を応用してパラメータの自動調整を行う手法が主流となっている.ただし,評価項目(特徴)は作成者の棋力,感覚に基づいて用意されることが多く,これまで,複数の駒同士の関係など,複雑な特徴が数多く考案されてきた.本研究では,明示的に用意する特徴としては局面を表す基本的で単純なもののみとし,多項式カーネルとサポートベクターマシン(SVM)を用いて評価関数の学習を...行う手法を提案する.多項式カーネルを用いることにより,単項式で表現できる特徴間のn項関係を,全て高次の特徴として利用することができる.また,評価関数の学習問題を,合法手後の局面を順位づける2部ランキングの問題と捉え,SVMを用いて学習を行う手法(ランキングSVM法)を提案する.対局や棋譜との一致率を調べる実験結果,及び駒組みの観察等から,ランキングSVM法の有効性を示す.
Recently, automatic optimization of parameters by applying machine learning methods has become a mainstream approach for developing good evaluation functions in shogi. However, the features used in the evaluation functions are prepared by the developer, depending heavily on his/her knowledge and intuition. To date, many complex features, such as relationships between multiple pieces, have been designed. In this paper, we propose an approach using polynomial kernels and Support Vector Machines (SVM), where only very simple features will be prepared explicitly. Polynomial kernels allow us to consider high dimensional, n-ary relations of monomial features. We further regard the problem of evaluation function learning as a bipartite ranking problem of the positions after legal moves, and propose a method which uses SVMs (ranking SVM).We show the effectiveness of our algorithm through computational experiments.
続きを見る

本文ファイル

j97-d_3_593 pdf 561 KB 371  

詳細

PISSN
NCID
レコードID
権利関係
主題
登録日 2015.05.12
更新日 2018.07.04

この資料を見た人はこんな資料も見ています