<学術雑誌論文>
PREDICTIVE INFORMATION CRITERIA FOR BAYESIAN NONLINEAR REGRESSION MODELS

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
出版タイプ
アクセス権
Crossref DOI
関連情報
概要 Bayesian nonlinear regression modeling based on basis expansions provides efficient methods for analyzing data with complicated structure. A crucial issue in the model building process is the choice o...f adjusted parameters including hyper-parameters for prior distribution and the number of basis functions. Choosing these parameters can be viewed as a model selection and evaluation problem. We present an information criterion for evaluating Bayesian nonlinear regression models. Our proposed modeling procedure enables us to select the appropriate values of hyper-parameters and the number of basis functions. We use a real data analysis and simulation studies to validate the performance of the proposed nonlinear regression modeling. Simulation studies show that our proposed modeling strategy performs well in various situations.続きを見る

本文ファイル

KimKawanoKonishi_Final pdf 214 KB 502  

詳細

PISSN
NCID
レコードID
査読有無
主題
登録日 2015.03.09
更新日 2020.11.02

この資料を見た人はこんな資料も見ています