<紀要論文>
AN ALGORITHMIC APPROACH TO ACHIEVE MINIMUM $ \rho $-DISTANCE AT LEAST d IN LINEAR ARRAY CODES

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
出版タイプ
アクセス権
関連情報
関連DOI
概要 An array code/linear array code is a subset/subspace, respectively, of the linear space $ mathrm{Mat}_{m chi s} (F_q) $, the space of all $ m chi s $ matrices with entries froma finite field $ F_q $ e...ndowed with a non-Hamming metric known as the RT-metric or $\rho$-metric or $ m $-metric. In this paper, we obtain a sufficient lower bound on the number of parity check digits required to achieve minimum $\rho$-distance at least $ d $ in linear array codes using an algorithmic approach. The bound has been justified by an example. Using this bound, we also obtain a lower bound on the number$ B_q (m chi s, d) $ where $ B_q(m chi s, d) $ is the largest number of code matrices possiblein a linear array code $ V subseteq mathrm{Mat}_{m chi s} (Fq) $ having minimum $\rho$-distance at least $ d $.続きを見る

詳細

レコードID
査読有無
主題
ISSN
DOI
NCID
タイプ
登録日 2009.09.25
更新日 2018.02.01

この資料を見た人はこんな資料も見ています