<紀要論文>
REPRESENTATIONS OF INTERNAL CATEGORIES

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
出版タイプ
アクセス権
関連DOI
関連DOI
関連URI
関連URI
関連HDL
関連情報
概要 Adams gave the notion of a Hopf algebroid generalizing the notion of a Hopf algebra and showed that certain generalized homology theories take values in the category of comodules over the Hopf algebro...id associated with each homology theory. A Hopf algebra represents an affine group scheme which is a group in the category of a scheme and the notion of comodules over a Hopf algebra is equivalent to the notion of representations of the affine group scheme represented by a Hopf algebra. On the other hand, a Hopf algebroid represents a groupoid in the category of schemes. Therefore, it is natural to consider the notion of comodules over a Hopf algebroid as representations of the groupoid represented by a Hopf algebroid. This motivates the study of representations of groupoids, and more generally categories, for topologists. The aim of this paper is to set a categorical foundation of representations of an internal category which is a category object in a given category, using the notion of a fibered category.続きを見る

詳細

レコードID
査読有無
主題
ISSN
DOI
NCID
タイプ
登録日 2009.09.25
更新日 2024.01.10

この資料を見た人はこんな資料も見ています