作成者 |
|
本文言語 |
|
出版者 |
|
|
発行日 |
|
収録物名 |
|
巻 |
|
号 |
|
開始ページ |
|
終了ページ |
|
出版タイプ |
|
アクセス権 |
|
関連DOI |
|
関連DOI |
|
|
関連URI |
|
|
関連URI |
|
関連HDL |
|
関連情報 |
|
|
概要 |
Let $ (X, Y) $ be a smooth non-projective Moishezon compactification of $ mathbb{C}^3 $ with $ b_2(X) = 1 $. Then $ Y $ is a non-normal irreducible divisor on $ X $ with $ K_x = -rY (r = 1, 2) $. In t...his paper, we mainly study the case where $ Y $ is not nef, that is, there is a curve $ C $ such that $ (Y cdot C)_X < 0 $. First, we investigate the structure of the boundary divisor $ Y $ (Theorem 1) under the mild assumption that $ b_3(X) = 0 $. Next we define the invariant $ delta(X) $ and compute them for the examples with non-nef boundaries (Theorems 2 and 3).続きを見る
|