作成者 |
|
|
本文言語 |
|
出版者 |
|
|
発行日 |
|
収録物名 |
|
巻 |
|
号 |
|
開始ページ |
|
終了ページ |
|
出版タイプ |
|
アクセス権 |
|
関連DOI |
|
関連DOI |
|
|
関連URI |
|
|
関連URI |
|
関連HDL |
|
関連情報 |
|
|
概要 |
The Howe duality correspondence for a unitary dual pair over $ mathbb{R} $ is usually formulated for the determinant cover of the dual pair. For applications to automorphic theory, one has to use the ...Weil representation of the unitary dual pair (not of the coverings) instead, which is constructed by the doubling argument of Harris et al (Theta dichotomy for unitary groups. J. Amer. Math. Soc. 9(4) (1996), 941-1004). In this paper, we calculate explicit formulae for the Fock model of this latter representation, and determine the Howe correspondence between $ mathbf{K} $-types under this. This yields a description of the Howe duality correspondence between unitary groups in terms of certain $ \varepsilon $-factors.続きを見る
|