<紀要論文>
CONFLUENCE OF SINGULAR POINTS OF ORDINARY DIFFERENTIAL EQUATIONS OF FUCHSIAN TYPE INDUCED BY DEFORMATION OF TWO-DIMENSIONAL HYPERBOLIC CONE-MANIFOLD STRUCTURES

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
出版タイプ
アクセス権
関連DOI
関連DOI
関連URI
関連URI
関連HDL
関連情報
概要 Let $ { sigma_t }_t in (-infty, infty) $ be a one-parameter family of hyperbolic Riemannian metrics on an open annulus which is continuouswith respect to the Gromov-Hausdorff topology. We consider a s...ystem $ E_t $ of ordinary differential equations with singular points which depends on the Riemannian metric $ sigma_t $. If $ t \eq 0 $, all of the singular points of $ E_t $ are regular. If $ t = 0 $, $ E_0 $ has an irregular singular point. In this paper, we investigate the behavior of the singular points of $ E_t $. We show that a regular singular point of $ E_t $, together with another regular singular point of $ E_t $, becomes the irregular singular point of $ E_0 $ as $ t $ $ (>0) $ tends to zero and that the irregular singular point of $ E_0 $ becomes a non-singular point of $ E_t $ as $ t $ decreases from zero.続きを見る

詳細

レコードID
査読有無
主題
ISSN
DOI
NCID
タイプ
登録日 2009.09.25
更新日 2024.01.10

この資料を見た人はこんな資料も見ています