作成者 |
|
本文言語 |
|
出版者 |
|
|
発行日 |
|
収録物名 |
|
巻 |
|
号 |
|
開始ページ |
|
終了ページ |
|
出版タイプ |
|
アクセス権 |
|
関連DOI |
|
関連DOI |
|
|
|
関連URI |
|
|
|
関連URI |
|
関連HDL |
|
関連情報 |
|
|
|
概要 |
We give a short and alternative proof of a theorem of F. Jaeger that except for Potts models attached to the complete graphs, the only spin models associated with symmetric conference graphs with $ n ...geqq 5 $ vertices are the pentagon and the lattice graph $ L_2(3) $ with 9 vertices. The proof avoids Jaeger's use of the classification of strongly regular graphs having strongly regular subconstituents due to P. J. Cameron, J. M. Goethals, and J. J. Seidel.続きを見る
|