<eBook>
The 2D compressible Euler equations in bounded impermeable domains with corners

Responsibility
Creator
Language
Publisher
Year
Place
Relation
Abstract "We study 2D compressible Euler flows in bounded impermeable domains whose boundary is smooth except for corners. We assume that the angles of the corners are small enough. Then we obtain local (in ti...me) existence of solutions which keep the L2 Sobolev regularity of their Cauchy data, provided the external forces are sufficiently regular and suitable compatibility conditions are satisfied. Such a result is well known when there is no corner. Our proof relies on the study of associated linear problems. We also show that our results are rather sharp: we construct counterexamples in which the smallness condition on the angles is not fulfilled and which display a loss of L2 Sobolev regularity with respect to the Cauchy data and the external forces"--show more
Table of Contents Statement of the results
The associated linear Euler equations (C[infinity] coefficients)
Proof of proposition 3.3 and of proposition 3.4, and more estimates
The associated linear Euler equations (non-C[infinity] coefficients)
Proof of theorem 2.1, theorem 2.2, remark 2.1, remark 2.2.
View fulltext Full text available from Memoirs of the American Mathematical Society

Details

Record ID
Subject
SSID
LCCN
eISBN
XISBN
Notes
Created Date 2022.05.12
Modified Date 2022.05.12

People who viewed this item also viewed