## ＜電子ブック＞Operational Calculus : A Theory of Hyperfunctions

責任表示 by K. Yosida Yosida, K SpringerLink (Online service) English (英語) Springer New York Imprint: Springer 1984- New York, NY, United States シリーズ Applied Mathematical Sciences ; 55 In the end of the last century, Oliver Heaviside inaugurated an operational calculus in connection with his researches in electromagnetic theory. In his operational calculus, the operator of different...iation was denoted by the symbol "p". The explanation of this operator p as given by him was difficult to understand and to use, and the range of the valid ity of his calculus remains unclear still now, although it was widely noticed that his calculus gives correct results in general. In the 1930s, Gustav Doetsch and many other mathematicians began to strive for the mathematical foundation of Heaviside's operational calculus by virtue of the Laplace transform -pt e f(t)dt. ( However, the use of such integrals naturally confronts restrictions con cerning the growth behavior of the numerical function f(t) as t ~ ~. At about the midcentury, Jan Mikusinski invented the theory of con volution quotients, based upon the Titchmarsh convolution theorem: If f(t) and get) are continuous functions defined on [O,~) such that the convolution f~ f(t-u)g(u)du =0, then either f(t) =0 or get) =0 must hold. The convolution quotients include the operator of differentiation "s" and related operators. Mikusinski's operational calculus gives a satisfactory basis of Heaviside's operational calculus; it can be applied successfully to linear ordinary differential equations with constant coefficients as well as to the telegraph equation which includes both the wave and heat equa tions with constant coefficients.続きを見る I. Integration Operator h and Differentiation Operator s (Classes of Hyperfunctions: C and CH)I. Introduction of the Operator h Through the Convolution Ring CII. Introduction of the Operator s Through the Ring CHIII. Linear Ordinary Differential Equations with Constant CoefficientsIV. Fractional Powers of Hyperfunctions h, s and $$\frac{I}{{S - \alpha }}$$V. Hyperfunctions Represented by Infinite Power Series in hII. Linear Ordinary Differential Equations with Linear Coefficients (The Class C/C of Hyperfunctions)VI. The Titchmarsh Convolution Theorem and the Class C/CVII. The Algebraic Derivative Applied to Laplace's Differential EquationIII. Shift Operator exp(??s) and Diffusion Operator exp(??s1/2)VIII. Exponential Hyperfunctions exp(??s) and exp(??s1/2)IV. Applications to Partial Differential EquationsIX. One DimensionaL Wave EquationX. Telegraph EquationX. (cont.)XI. Heat EquationAnswers to ExercisesFormulas and TablesReferencesPropositions and Theorems in Sections.続きを見る http://hdl.handle.net/2324/1000970635 Full text available from SpringerLink ebooks - Mathematics and Statistics (Archive)

### 詳細

レコードID 3504834 QA299.6-433 515 Mathematics. Global analysis (Mathematics). Mathematics. Analysis. ssj0001297925 9780387960470(print) 9781461211181 2020.06.27 2020.06.28