<電子ブック>
Analysis of Single-Cell Data : ODE Constrained Mixture Modeling and Approximate Bayesian Computation

責任表示
著者
本文言語
出版者
出版年
出版地
関連情報
概要 Carolin Loos introduces two novel approaches for the analysis of single-cell data. Both approaches can be used to study cellular heterogeneity and therefore advance a holistic understanding of biologi...cal processes. The first method, ODE constrained mixture modeling, enables the identification of subpopulation structures and sources of variability in single-cell snapshot data. The second method estimates parameters of single-cell time-lapse data using approximate Bayesian computation and is able to exploit the temporal cross-correlation of the data as well as lineage information. Contents Modeling and Parameter Estimation for Single-Cell Data ODE Constrained Mixture Modeling for Multivariate Data Approximate Bayesian Computation Using Multivariate Statistics Target Groups Researchers and students in the fields of (bio-)mathematics, statistics, bioinformatics System biologists, biostatisticians, bioinformaticians The Author Carolin Loos is currently doing her PhD at the Institute of Computational Biology at the Helmholtz Zentrum München. She is member of the junior research group „Data-driven Computational Modeling“.続きを見る
目次 Modeling and Parameter Estimation for Single-Cell Data
ODE Constrained Mixture Modeling for Multivariate Data
Approximate Bayesian Computation Using Multivariate Statistics.
本文を見る Full text available from Springer Mathematics and Statistics eBooks 2016 English/International

詳細

レコードID
主題
SSID
eISBN
登録日 2020.06.27
更新日 2020.06.28