作成者 |
|
|
|
|
|
|
|
本文言語 |
|
出版者 |
|
発行日 |
|
収録物名 |
|
巻 |
|
開始ページ |
|
出版タイプ |
|
アクセス権 |
|
権利関係 |
|
権利関係 |
|
関連DOI |
|
関連URI |
|
関連HDL |
|
概要 |
Combined addition of interstitial-substitutional elements has been acknowledged to contribute to the increase in the strengths of steels. For further improvements in mechanical properties, their atomi...c-scale interaction mechanisms with dislocations are required to be examined. In this study, both high-resolution transmission electron microscopy and atom-probe tomography were used to correlate interstitial-substitutional elements with dislocation characteristics in austenitic stainless steels. Three types of dislocation core structures are identified and associated with their strain fields as well as N and Cr atoms in the N-added steels. It is revealed that N atoms interact elastically with the dislocations, followed by the segregation of Cr atoms via the chemical interaction between N and Cr atoms. This insight significantly improves the understanding of the multiple alloying mechanism in metallic materials such as interstitial alloys and high-entropy alloys.続きを見る
|