作成者 |
|
|
|
|
本文言語 |
|
出版者 |
|
発行日 |
|
収録物名 |
|
収録物名 |
|
巻 |
|
号 |
|
開始ページ |
|
終了ページ |
|
出版タイプ |
|
アクセス権 |
|
JaLC DOI |
|
関連情報 |
|
|
概要 |
In this brief, we propose a new physical design technique for a subquarter micrometer system-on-a-chip (SoC). By optimizing the individual layer’s routing grid space, coupling effects such as crosstal...k noise, crosstalk-induced delay variations, and coupling power consumption are almost eliminated with little runtime penalty. Experiments are performed on the design of an image processing circuit using a subquarter micron CMOS process with multilayer interconnects. Simply by employing our proposed technique, the maximum delay and the power consumption can be decreased simultaneously by up to 15% and 10%, respectively, without any other process improvements.続きを見る
|