## ＜学術雑誌論文＞A Finite Element Scheme for Two-Layer Viscous Shallow-Water Equations

作成者 著者識別子 作成者名 所属機関 所属機関名 Department of Intelligent Machinery and Systems Faculty of Engineering, Kyushu University 九州大学大学院工学研究院知能機械システム部門 著者識別子 作成者名 所属機関 所属機関名 Department of Intelligent Machinery and Systems Faculty of Engineering, Kyushu University 九州大学大学院工学研究院知能機械システム部門 英語 Kinokuniya 紀伊国屋 2006-06 23 2 163 191 Accepted Manuscript open access © 2006 日本応用数理学会 Japan Journal of Industrial and Applied Mathematics || 23(2) || p163-191 http://cm.mech.kyushu-u.ac.jp/~kanayama/index-j.html http://omodaru.cas.cmc.osaka-u.ac.jp/Jsiam/ Japan Journal of Industrial and Applied Mathematics || 23(2) || p163-191 http://cm.mech.kyushu-u.ac.jp/~kanayama/index-j.html http://omodaru.cas.cmc.osaka-u.ac.jp/Jsiam/ Japan Journal of Industrial and Applied Mathematics || 23(2) || p163-191 http://cm.mech.kyushu-u.ac.jp/~kanayama/index-j.html http://omodaru.cas.cmc.osaka-u.ac.jp/Jsiam/ In this paper, the two-layer viscous shallow-water equations are derived from the three-dimensional Navier-Stokes equations under the hydrostatic assumption. It is noted that the combination of upper ...and lower equations in the two-layer model produces the classical one-layer equations if the density of each layer is the same. The two-layer equations are approximated by a finite element method which follows our numerical scheme established for the one-layer model in 1978. Finally, it is numerically demonstrated that the interfacial instability generated when the densities are the same can be eliminated by providing a sufficient density difference.続きを見る

### 本文ファイル

JJIAM pdf 2.69 MB 347

### 詳細

レコードID 5552 査読有 Shallow-water Layer model Navier-Stokes equations Finite element scheme 0916-7005 学術雑誌論文 2009.04.22 2017.02.09