<プレプリント>
POINT CONFIGURATIONS, CREMONA TRANSFORMATIONS AND THE ELLIPTIC DIFFERENCE PAINLEVE EQUATION

作成者
本文言語
出版者
発行日
雑誌名
出版タイプ
アクセス権
概要 A theoretical foundation for a generalization of the elliptic difference Painleve equation to higher dimensions is provided in the framework of birational Weyl group action on the space of point confi...gurations in general position in a projective space. By introducing an elliptic parametrization of point configurations, a realization of the Weyl group is proposed as a group of Cremona transformations containing elliptic functions in the coefficients. For this elliptic Cremona system, a theory of $ \tau $-functions is developed to translate it into a system of bilinear equations of Hirota-Miwa type for the $ \tau $-functions on the lattice. Application of this approach is also discussed to the elliptic difference Painleve equation.続きを見る

本文情報を非表示

2005-5 pdf 400 KB 59  

詳細

レコードID
査読有無
関連情報
主題
注記
タイプ
登録日 2009.04.22
更新日 2018.02.22